
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

ROBOTIC MANIPULATION ON A MOVING PLATFORM
UTILIZING FORCE SENSING AND SONAR RANGING

by

Roy A. Raphael

March 1998

Thesis Advisor:
Second Reader:

Xiaoping Yun
John G. Ciezki

Approved for public release; distribution is unlimited.

'XfflC VBBl***00*

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY

blank)
USE ONLY (Leave REPORT DATE

March 1998
3. REPORT TYPE AND DATES COVERED

Master's Thesis

4. TITLE AND SUBTITLE ROBOTIC MANIPULATION ON A MOVING
PLATFORM UTILIZING FORCE SENSING AND SONAR RANGING

6. AUTHOR(S) Raphael, Roy, A.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

FUNDING NUMBERS

8. PERFORMING
ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13 ABSTRACT (maximum 200 words)
Robotic manipulators are widely used in industry where the environment may be too hostile for workers.

However, their application has been limited to an industrial setting where the robot is mounted on a stationary
base. It is of great interest to expand the application of the robot manipulator to where it is mounted on an
autonomous delivery vehicle. This application would enable the delivery vehicle not only to locate objects in a
hostile environment, but also to perform tasks that would entirely remove the human being from the hostile
environment. This thesis explores the feasibility of implementing a manipulator on an autonomous vehicle. A
Zebra-ZERO Force Control Robot is mounted on a moving platform for feasibility simulations of an autonomous
delivery vehicle. The Zebra-ZERO system consists primarily of a robotic arm with six degrees of freedom, a six-
axis force sensor mounted at the end of the manipulator, and supporting computer hardware and software. In this
thesis, the capability of the Zebra-ZERO system is expanded by integrating it with an external sonar ranging
system. The sonar ranging system provides range feedback that is critical for positioning the manipulator while it
is mounted on a moving platform. Test results demonstrate that the manipulator mounted on a moving platform is
able to compensate for random platform motions and successfully perform various manipulation tasks.

14. SUBJECT TERMS
Control, Zebra-ZERO, force sensor, sonar ranging, robot manipulator

17. SECURITY CLASSIFI-
CATION OF REPORT

Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS PAGE

Unclassified

19. SECURITY CLASSIFI-
CATION OF ABSTRACT

Unclassified

NSN 7540-01-280-5500

15. NUMBER
PAGES

OF

132

16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

11

Approved for public release; distribution is unlimited

ROBOTIC MANIPULATION ON A MOVING PLATFORM UTILIZING FORCE
SENSING AND SONAR RANGING

Roy A. Raphael
Lieutenant, United States Navy

B.S., University of San Diego, 1991

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

Author:

NAVAL POSTGRADUATE SCHOOL
March 1998

TT^ Roy A\ Raphael

Approved by:
Xiaoping Yun, Thesis Advisor

Herschel H. Loomis, Jr., unsKrman
Department of Electrical and Computer Engineering

111

IV

ABSTRACT

Robotic manipulators are widely used in industry where the environment may be too

hostile for workers. However, their application has been limited to an industrial setting

where the robot is mounted on a stationary base. It is of great interest to expand the

application of the robot manipulator to where it is mounted on an autonomous delivery

vehicle. This application would enable the delivery vehicle not only to locate objects in a

hostile environment, but also to perform tasks that would entirely remove the human being

from the hostile environment. This thesis explores the feasibility of implementing a

manipulator on an autonomous vehicle. A Zebra-ZERO Force Control Robot is mounted

on a moving platform for feasibility simulations of an autonomous delivery vehicle. The

Zebra-ZERO system consists primarily of a robotic arm with six degrees of freedom, a six-

axis force sensor mounted at the end of the manipulator, and supporting computer hardware

and software. In this thesis, the capability of the Zebra-ZERO system is expanded by

integrating it with an external sonar ranging system. The sonar ranging system provides

range feedback that is critical for positioning the manipulator while it is mounted on a

moving platform. Test results demonstrate that the manipulator mounted on a moving

platform is able to compensate for random platform motions and successfully perform

various manipulation tasks.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. PROBLEM STATEMENT 1

B. THESIS ORGANIZATION 2

n. BACKGROUND AND SYSTEM DESCRIPTION 5

A. THE ZEBRA-ZERO SYSTEM 5

1. PC and Robot Control Software 5

2. Arm Assembly 6

3. Drive System 8

4. Motor Control Board 8

5. Power Amplifiers and Power Supply 10

6. Gripper 10

7. Force Sensor 11

B. ULTRASONIC RANGING SYSTEM 12

1. Polaroid Ultrasonic Ranging Unit 13

2. Ranging Controller Circuit 17

C. DIGITAL INPUT/OUTPUT BOARD 23

1. CYDIO 24 I/O Board Description 23

2. CYDIO 24 Implementation 23

m. HYBRID CONTROL 25

A. HYBRID CONTROL SYSTEM DESCRIPTION 26

B. PLANT KINEMATICS 29

1. Forward Kinematic Solution 29

vu

2. Inverse Kinematic Solution 35

C. CONTROLLER ARCHITECTURE 40

IV. ZEBRA-ZERO SOFTWARE OVERVIEW 43

A. TURBO BORLAND C++ OVERVIEW 43

1. Opening an Existing Project 44

2. Creating a Project file 45

B. EXECUTING FACTORY-PROVIDED PROGRAMS 47

1. Testing the Zebra-ZERO System 47

2. Maneuvering In and Out of the Nest 48

3. Utilizing the Command Shell 48

4. Reading Arm Status 49

C. IMPLEMENTING POSITION CONTROL MODE OF OPERATION 49

1. Description 49

2. Demonstration of Position Control Mode of Operation 50

3. Example Program Utilizing Force Threshold Sensing 50

D. IMPLEMENTING FORCE CONTROL MODE OF OPERATION 51

1. Description 51

2. Example Program Utilizing the Command push_with_bias 52

E. SONAR RANGING SYSTEM IMPLEMENTATION 55

V. HARDWARE SIMULATIONS ON A MOBILE BASE 57

A. STATIONARY TARGET HARDWARE SIMULATION 57

1. Controller Description 57

2. Results 60

B. MOVING TARGET HARDWARE SIMULATION 61

vm

1. Controller Description 61

2. Results 65

VI. CONCLUSION AND RECOMMENDATIONS 67

A. THESIS SUMMARY 67

B. FUTURE WORK 67

APPENDIX A. ZEBRA-ZERO DEMONSTRATION PROGRAMS 69

APPENDIX B. ZEBRA-ZERO HARDWARE TEST PROGRAMS FOR A

STATIONARY TARGET 89

APPENDIX C. ZEBRA-ZERO HARDWARE TEST PROGRAMS FOR A MOVING

TARGET ; '. 99

LIST OF REFERENCES ! 15

INITIAL DISTRIBUTION LIST ! 17

IX

LIST OF FIGURES

Figure 1. Kinematic Configuration. Ref. [1] 7

Figure 2. Force Sensor 12

Figure 3. Ultrasonic Ranging System Block Diagram 13

Figure 4. Ranging Circuit Board Block Diagram. Ref. [4] 14

Figure 5. Ranging Controller Block Diagram 18

Figure 6. Ranging Controller Timing Diagram. After Ref. [4] 18

Figure 7. Ranging Controller Schematic 22

Figure 8. Control System Diagram. After Ref. [7] 28

Figure 9. Translation and Rotation Translation. After Ref. [3] 32

Figure 10. Software Controller Model 41

Figure 11. Program controll.c Control Model 60

Figure 12. Program controU.c Controller Model 64

Figure 13. Zebra-ZERO Manipulator Positioning Time ys Distance 66

XI

Xll

LIST OF TABLES

Table 1. 6500 Series Sonar Ranging Module Inputs and Outputs 16

xm

XIV

I. INTRODUCTION

A. PROBLEM STATEMENT

Remote manipulation of objects with little or no human intervention is an important

issue in modern robotics. It is especially critical in the areas of mine clearance, space

exploration and construction and operation of the multinational space station [Ref. 21]. The

Zebra-ZERO Force Control Robot [Ref. 1] supports the study of manipulating an object

under the condition that the control system has prior knowledge of the approximate location

of the object. The end-effector is first directed to a location that is in close proximity with

the object. It then executes a hunting algorithm to put the end-effector in contact with the

object. As contact is made, the force sensor is utilized to perform the desired task(s). The

Zebra-ZERO system is not able to utilize a closed-loop control algorithm until the end-

effector is in contact with the object. This poses an obvious constraint when operating on a

moving platform.

Given that the Zebra-ZERO is mounted on a mobile platform, it is desirable to

investigate the application and limitations of the manipulator. To aid in this study, the

Zebra-ZERO must be equipped with a medium-range (1 to 4 feet) sensor system that

provides positioning data for the manipulator control system while it performs tasks on a

moving platform. Furthermore, the medium-range sensor system must provide real-time

control information to the Zebra-ZERO system in a data format that is easily accessed by

the control algorithm. In order to utilize an additional sensor, it is necessary to implement

the following steps:

• Design and build an intermediate-range sensor system.

• Interface a medium-range sensor system to the Zebra-ZERO system.

• Develop algorithms that integrate the medium-range sensor into the Zebra-

ZERO control software.

There are many types of medium-range sensors that may be used to facilitate this

study, including lasers, and IR/Radio beacons. However, the sensor of choice in this study

is the sonar transducer. A sonar transducer system is chosen because relatively fewer parts

are required to provide real-time data to the Zebra-ZERO system resulting in lower cost.

Furthermore, since the sonar sensor has the slowest range acquisition rate (10 updates per

second) [Ref. 4] of the above mentioned sensors, use of faster sensors such as the Sensus

500 laser system (30 updates per second) [Ref. 13] can only enhance the performance of the

Zebra-ZERO. Therefore, the test results utilizing a sonar transducer are the most portable to

the other sensor systems.

Successful employment of the manipulator on a moving platform requires that sonar

information is continually available to the Zebra-ZERO control software for real-time

implementation. Therefore, the CyberResearch CYDIO 24 digital I/O board is used to input

sonar ranging data. Installed in one of the Zebra-ZERO motherboard slots, the sonar

ranging system sends continually updated ranging information to the I/O board where it is

made available to the control software. Once the ranging information is retrieved, it is

integrated into the control algorithm. Efficient and accurate control of the Zebra-ZERO on

a moving platform is achieved through task-specific code developed to handle integrated

control of both the medium-range sonar system and the force sensing system.

B. THESIS ORGANIZATION

This thesis reports on the feasibility of implementing the Zebra-ZERO force control

robot while it is mounted on an autonomous vehicle. The Zebra-ZERO is a relatively

inexpensive robot platform with a vast software library of control functions. This makes it

an ideal choice for studying robotic manipulation while the robot is on a static base.

However, it is of great interest to study how well the Zebra-ZERO system operates in an

environment where the manipulator is mounted on a moving platform. To conduct this

study, a sonar ranging system is integrated into the Zebra-ZERO system to provide range

information that positions the manipulator in a dynamic operating environment.

Chapters II through VII document the development of variations of pick-and-place

algorithms that utilize the combination of the Zebra-ZERO Robot and a sonar ranging

system on a moving platform. Technical aspects of each component system are described in

Chapter II to provide the reader with an understanding of the Zebra-ZERO, CYDIO 24

Digital I/O board, and Ultrasonic Ranging System. Applicable concepts of controller

design are presented in Chapter m. In Chapter IV, the reader is introduced to Zebra-ZERO

programming concepts that include writing, compiling, linking, and running programs from

within a Borland Turbo C++ 3.0 programming shell. Also, a segment of the chapter

introduces basic and more advanced programs which are explained in detail to clarify the

applications of the Zebra-ZERO software library. Chapter V contains a description of the

hardware simulations that employ the Zebra-ZERO on a moving platform and documents

the results of the simulations. Concluding remarks and proposed recommendations for

future work are presented in Chapter VI.

II. BACKGROUND AND SYSTEM DESCRIPTION

A. THE ZEBRA-ZERO SYSTEM

The Zebra-ZERO Force Control Robot, built by Integrated Motions, Incorporated, is

designed for robotics research and development. Recent research projects include the

development of fine-motion planning systems that utilize the force sensing [Ref. 14], the

development of general motion planning systems for assembly tasks [Ref. 15], and contact

space analysis [Ref. 16].

The robot arm is composed of six revolute joints that allow the manipulator to

position objects/tools with arbitrary orientations within a characteristic workspace. The last

link of the manipulator is attached to a six-axis force sensor which in turn is attached to the

gripper. The Zebra-ZERO system is controlled from a DOS-based personal computer (PC)

utilizing C programs and libraries.

The entire Zebra-ZERO system consists of the manipulator, gripper, force sensor,

power amplifiers/power supply, motor control board, PC, and robot control software. The

individual elements work together to produce coordinated user defined motions and

positioning solutions.

1. PC and Robot Control Software

The Zebra-ZERO utilizes a PC as the user-hardware interface. It contains a 133

MHz Pentium processor and implements the DOS operating system. Control, monitoring,

and code execution are implemented through C coded software that includes a library of

functions provided by Integrated Motions, Inc. [Ref. 1]

The system delivered with a Borland Turbo C++ compiler and a compiled library of

robot control functions called robot.lib. The library contains functions that execute a wide

variety of tasks such as kinematic routines, path planners, servo code, motion parameter

setting, and high-level motion/manipulation commands. The programmer is able to utilize

C code and the vast library of functions to create a broad spectrum of task-specific

programs and functions [Ref. 1]. For instance, the programmer can design code that

controls the manipulator so that it approaches a surface while it polls the force sensor output

to detect contact. After the end-effector contacts the surface, it can perform programmer-

defined tasks such as removing a peg or moving along a surface. Examples of these type of

programs are presented in chapters IV and V.

2. Arm Assembly

The Zebra-ZERO manipulator is a six-link, six-joint, revolute, rigid mechanical

manipulator with six degrees of freedom. Its purpose is to impose the system control law

on the environment. Additionally, the manipulator houses all six drive motors with their

associated linkages and optical position encoders. The force sensor with attached gripper is

mounted at the end of the wrist joint. Figure 1 is a kinematic representation of the Zebra-

ZERO manipulator. The links and joints are referred to as LI through L6, and Jl through

J6 respectively. The fixed base plate is assumed to be LO and is not shown in Figure 1. LO

is connected to LI which is the rotating base carriage. LI through L6 are connected in

order through their respective joints, Jl through J6 [Ref. 1].

The plane in which the base carriage (Jl axis) lies and to which the upper arm (J2

axis) is normal is defined as the plane of the arm. This plane contains both the upper arm

and forearm links. The J3 axis intersects and is orthogonal to the J4 axis. The J4, J5, and

J6 axes all intersect at the same point. This intersection point is defined as the wrist center

[Ref. 1].

The three primary Cartesian frames are also shown in Figure 1. They are the base

frame, wrist frame, and the tool frame. The base frame is fixed and is imbedded in the

intersection of the Jl and J2 axes such that the x-axis points forward and away from the

manipulator cables and is located eleven inches above the mounting surface. The origin of

the wrist frame is in the intersection of the wrist axes and is rigidly attached to the force

sensor and gripper. The tool frame, in this case, is depicted as being located at the fingertips

of the gripper which is the default location [Ref. 1].

J2Axis

Too] Frame

Yc

Figure 1. Kinematic Configuration. Ref. [1]

3. Drive System

The Zebra-ZERO drive system consists of six DC brush-commutated motors and

their associated combinations of shaft and gear linkages. The motors are energized by the

Power Amplifier Board described in a subsequent section. Each motor drives an individual

joint through the drive linkages that run throughout the manipulator's hollow links. Each

motor has a two-stage planetary gear head with gear reductions of 24:1, and an optical

encoder. Motors that drive Jl and J2 are mounted in the rotating base carriage and transmit

power directly through a set of gears to their respective joints. The motors that drive J3

through J6 are mounted in the upper arm. Power for the wrist joints is transmitted via

shafts that run through the arm and bevel gears located at the elbow joint. The wrist uses a

concentric shaft differential to drive its three intersection joints. The optical encoders are

mounted directly to each motor shaft and provide position feedback to the motor controller

board [Ref. 1].

4. Motor Control Board

The motor control board is the arbitrator between the PC and the manipulator. Its

primary task is to execute motor control by measuring shaft angles from each motor encoder

and outputting motor commands to the power amplifiers [Ref. 1].

The HCTL-1 motor control board was designed and built by Hewlett Packard for

general purpose motion control. It utilizes eight HCTL-1100 general purpose motion

control integrated circuits (ICs). The purpose of the ICs is to free the PC for other tasks by

performing the time-intensive functions of digital motion control [Ref. 2]. Seven of the

eight channels are used by the Zebra-ZERO with the eighth channel left as a spare. Six

HCTL-1100's are used to control each of the six degrees of freedom, and one is used to

control the gripper [Ref. 1].

The motor control board interfaces with the computer through a full-length slot in

the PC's motherboard. Since the HCTL-1 is a memory mapped device, the registers for

each chip are mapped directly into the PC's memory starting at the HCTL-1 segment

address. Control modes are programmed by writing directly to the respective 64-bit

register. The segment address is set on the board itself through eight dip switches which

correspond to address bits A10 through A17. Address bits A18 and A19 are hardwired to

logical 1. The segment address of the board in the Zebra-ZERO is set to OxDOOO [Ref. 1].

The memory address for successive HCTL-1100s are located sequentially in

memory and are referenced as axes 0 through 7 [Ref. 1]. In order to write to a particular

HCTL 1100 address, the memory call must be made to the sum of the segment address, chip

offset, and chip register offset. A typical function call in C code that writes a logical 1 to

the tenth register of controller axis 2 with the segment address set to OxDOOO is as follows:

pokeb(0xD000,0xSA,l).

The HCTL-1 motor controller outputs seven power amplifier control channels and

inputs seven position encoder feedback signals. Each output is extracted from a single

HCTL-1100IC and consists of a pulse-width modulated (PWM) speed and direction signal.

The PWM speed signal is a 20 KHz square wave whose duty cycle controls how much

current is to be applied to the respective motor. A duty cycle of 0% commands maximum

current and a duty cycle of 100% commands minimum current. Each IC also has a TTL

level optical encoder input that provides angular joint position feedback to the control

algorithm. The physical connection between the motor controller board and the power

amplifier board consists of two 40-pin and one 10-pin flat ribbon cables. These cables

provide the speed and direction commands for each motor, speed and direction commands

for the gripper, the position feedback from each position encoder, and the output data from

the force sensor. [Ref. 1]

5. Power Amplifiers and Power Supply

The Zebra-ZERO power supply provides power to all of the joint motors through

the power amplifier board. The power supply is located in its own enclosure and provides

24 volt DC, 23 amp unregulated power. It has a power-off, and a power-on switch mounted

on its enclosure as well as a jack for a remote power off switch. Power on is indicated by

illumination of a green power on light. The power supply output goes directly to the base of

the arm assembly where it connects to the power amplifier board [Ref. 1].

The power amplifier board has a power amplifier for each joint motor as well as the

gripper and one extra unused amplifier. The board is housed in the stationary portion of the

arm base assembly. Each PWM power amplifier receives 24 volts at 3 amps which is

provided by the power supply. Their respective power transistors are attached to a heat sink

that is bolted to the top of the power amplifier housing. The power amplifier logic is

designed to drive the joint motors in accordance with the PWM input signals. The

amplifiers shut down when a control signal is absent. The power amplifier board also

accepts encoder and force sensor signals that it passes on to the motor controller board

[Ref. 1].

6. Gripper

The Zebra-ZERO utilizes an electric gripper as an end-effector. The gripper allows

the manipulator to grasp and manipulate objects within the working environment. The

gripper actuator consists of a screw-type mechanism that opens and closes the fingers within

a range of 0.0 to 85.0 millimeters [Ref. 1].

10

7. Force Sensor

The force sensor is a cylindrical device mounted between the wrist flange and the

gripper. The sensor is instrumented with strain gauges that measure the forces and torques

acting on the end-effector. The Zebra-ZERO force sensor provides six strain

measurements. They represent forces and moments acting in the directions shown in Figure

2.

The data acquisition system within the sensor receives strain signals from three pairs

of strain gauges each mounted on three individual bending beams within the sensor. The

beams flex as forces and moments are applied to the end-effector. Strain measurements are

extracted and used to construct a 6x1 strain measurement vector whose element values are

proportional to those of the applied forces and moments [Ref. 1]. The maximum force

reading is 15 grams. However, forces over 100 Kgf, or moments grater than 4000 Kgf-mm

will damage the sensor [Ref. 1].

The six strain measurement signals are fed into a data acquisition system within the

sensor where they are digitized and sent serially to the power amplifier board. From the

power amplifier board, the signal is sent to the motor controller card were the data is

reassembled into parallel words and made available to the PC as a 6x1 force/moment vector

in the tool frame [Ref. 1].

11

Wrist Face Plate

Gripper Face Plate

M,

r*
w

Figure 2. Force Sensor

Power for the force sensor is provided by the PC power supply. This feature allows

the user to access force sensor information even when power is not applied to the arm

assembly.

B. ULTRASONIC RANGING SYSTEM

The Ultrasonic Ranging System provides the Zebra-ZERO control algorithm with

range data from entities in the control environment. Sonar ranging data is the control input

that safely guides the arm assembly toward the target object. Accurate and frequent range

feedback facilitates timely control of the manipulator so as to reduce the possibility of

12

damaging the manipulator assembly or the prime mover while minimizing the closing time

to the target object.

Figure 3 is the block diagram of the Ultrasonic Ranging System. It consists of the

Polaroid Ranging Unit, Ultrasonic Transducer, and Ranging Controller Circuit (RCC). The

ranging system works autonomously to acquire sonar ranging data and to continuously pass

the data to the Digital I/O board.

RANGING

CONTROLLER

CIRCUIT

INIT ^
POLAROID

ULTRASONIC

RANGING

UNIT

TRANSMIT/
OUTPUT

-rn ^

^ ECHO

RETURN

10 BOARD *(

ULTRASONIC
TRANSDUCER

Figure 3. Ultrasonic Ranging System Block Diagram

1. Polaroid Ultrasonic Ranging Unit

The Polaroid Ultrasonic Ranging Unit is designed and built by the Polaroid

Corporation for the sole purpose of controlling the operating mode (transmit/receive) of the

13

sonar transducer [Ref. 4]. The ranging unit consists of the power interface, digital, analog,

and coupling circuits. They all work together to implement the sonar transducer as shown

in Figure 4.

RANGING

CONTROLLER
& INTERFACE

CIRCUIT

POWER TRANSMIT

CIRCUIT

T[

<
tANSMIT

k

DOT

DIGITAL

CIRCUIT

CIRCUIT

..
TRANSMIT/ECHO 1

ECHO 1
\

GAIN«
BANDWIC

CONTRC
TH
L >

> k

PROC
E

:ESSED
310

ANALOG ECHO

CIRC •urr

TRANSMITTED
PULSE

)

SONAR RETURN,

Figure 4. Ranging Circuit Board Block Diagram. Ref. [4]

The digital section of the ranging circuit board receives the Input Transmit

Command (INTT) from the RCC. Upon receipt of INTT, the digital circuit creates a low-

power modulated electrical pulse that is sent to the power interface circuit. The power

interface circuit then generates a high-energy electrical pulse which is sent to the transducer.

While transmitting, the transducer appears to be a loudspeaker to the Ranging Unit. The

transducer converts the high energy electrical signal into an ultrasonic "Chirp." After the

14

pulse is sent and a short blanking period is invoked, the analog circuit is enabled so that it

can receive the sonar return from the target. The transducer now appears to be a

microphone to the Ranging Unit. Once the return is received by the transducer and

processed by the analog circuit, the raw unprocessed Echo (ECHO) signal is sent to the

digital section. The digital section then converts ECHO into a square wave which is sent to

the ranging controller circuit. [Ref. 4]

The circuit board utilizes a nine-pin plug with which to interface to the control

circuit. However, only seven of the nine pins are utilized. The signals available at the pins

are described in Table 1.

15

Pin Number Signal Description
1 GND Ground (GND): Module ground line.
2 BLINK Blanking (BLINK): Utilized in multiple-echo

mode. After the first echo is received and
ECHO is set high, BLINK must be taken high
then low to reset the ECHO output for the next
echo to be detected. BLINK is set low for this
application.

3 Not Used N/A
4 INIT Transmit Initiate (INIT): Transition from low to

high triggers the Transmit pulse.
5 Not Used N/A
6 osc Oscillator (OSC): The oscillator onboard the

module generates a 420 KHz signal as a time
base for the modulated pulse. OSC is an output
based on the oscillator output and is provided
for external use. OSC is not used in this
application.

7 ECHO Echo (ECHO): transitioning from high to low
indicates the time a reflected signal is received
by the transducer. The time between INIT going
high and the ECHO output going high is
proportional to the distance between the target
and the transducer.

8 BINH Blanking Inhibit (BINH): BINH High ends the
blanking of the receive input prior to internal
blanking. BINH is set low for the mode of
operation (Single Echo) used in this application.

9 VCC VCC: 6 VDC, 2.5 amp power supply.

Table 1. 6500 Series Sonar Ranging Module Inputs and Outputs

16

2. Ranging Controller Circuit

The Ranging Controller Circuit (RCC) generates INIT, processes ECHO, provides

power to the Polaroid Ultrasonic Ranging Unit, and outputs an eight-bit digital range

measurement. The RCC requires a 6 VDC, 2.5 amp power supply to drive both the

controller circuitry and the Ranging Unit. INIT is sent to the Ranging Unit to trigger the

sonar transmission signal. The Ranging Unit sends ECHO to the RCC to signal the end of

the ranging cycle. The RCC computes the time difference between the generation of INIT

and the reception of ECHO, from which it calculates an eight-bit word containing the

measured time it takes the sonar transmission to travel from the transducer to the target and

back to the transducer. The eight-bit binary range output is displayed by a bank of LEDs on

the RCC and is sent to the I/O board for processing by the PC.

The RCC design has six major sections. The sections work together to generate

control signals which support both operating the Polaroid Ultrasonic Ranging Unit in

single-echo mode and outputting accurate ranging data to the PC. Relevant technical

information is presented in Figures 5 through 7. Figure 5 is the RCC block diagram, Figure

6 is the RCC timing diagram, and Figure 7 is the RCC schematic diagram.

The drive circuit generates INIT, a 5 Hz square wave that signals the beginning of

each ranging cycle and triggers the transmission of each sonar pulse. INLT is sent to the

Ranging Unit to initiate a sonar transmission and to the reference latch to clear the binary

counter. After applying power (Vcc) to the Ranging Unit, a minimum of 5 milliseconds

must elapse before the Ultrasonic Ranging Unit receives INIT [Ref. 4, p. 19]. The RCC is

equipped with a DIP switch that the operator closes after power is applied that allows INIT

to be applied to the Ranging Unit.

17

RANGING CONTROLLER BOARD
"I

DRIVE CIRCUIT
(5 Hz)

INIT RANGING
CIRCUIT BOARD

CLK

' '
ECHO

MC COUPLING

l_
' ' ' '

REFERENCE
LATCH

DIFFERENTIATOR 8-BIT LED DISPLAY

LE .

i k

OF CRST 1 I/O BOARD

12S KHZ
CLOCK CIRCUIT

8-BIT
BINARY COUNTER

"p-^7
ECHO LATCH LED

DRIVER

Figure 5. Ranging Controller Block Diagram

_L
75m»

_L
lODm

_l

Figure 6. Ranging Controller Timing Diagram. After Ref. [4]

18

The 125 KHz timer generates an accurate timing signal which is used for running

the binary counter. The timer circuit consists of a crystal oscillator and binary counter. The

crystal oscillator generates an 8 MHz square wave that ensures accurate and consistent time-

to-distance conversions. The crystal oscillator output is sent to a divide-by 64 counter that

provides the 125 KHz square wave clock (CLK) to the 8-bit binary counter.

The reference latch controls the operation of the binary counter. It generates

Counter Rest (CRST) when either IN1T or Counter Overflow (OF) is generated. The eight-

bit binary counter utilizes eight stages of a twelve-stage binary counter IC. It counts the

number of clock pulses that are sent from the clock circuit during the time between

generation of INTT and OF, and outputs the eight-bit binary count to the echo latch. Also,

by utilizing Q3 (the third flip-flop output) as the least significant digit in the count, a divide-

by-eight function is executed. OF is generated after Qll is set high indicating the

maximum eight-bit count (28) has been reached. OF commands the reference latch to

generate Counter Reset (CRST). CRST causes all output bits to go low pending the start of

the next ranging cycle.

The echo latch reads the output of the binary counter and latches the counter output

at the time ECHO is generated. When Latch Enable (LE), which is the differentiated

ECHO signal, is received, the latch passes the values that appear at its inputs to their

respective outputs. They are then sent to the LED driver.

The LED driver conditions the eight-bit latched counter output so that it is able to

drive both the LED display and the I/O board input port. The driver reads the output from

the echo latch then inverts and outputs the data to the eight-bit LED display and to the I/O

board. The driver is powered by the PC and provides the current required to drive the

inputs of both devices while isolating the RCC from the I/O board.

The eight-bit LED display is made up of eight individual LEDs that display the

output of the ECHO latch. The LEDs are located on the RCC. They facilitate quick

verification of proper board operation and serve as a valuable trouble shooting tool. The

user should note that since the RCC is connected to the I/O board, if the PC is powered

down then the LEDs will all go high. Therefore, the 37-pin connector that interfaces the

19

RCC to the computer must be disconnected if the ranger is operated independently while

the PC is off.

20

21

Figure 7. Ranging Controller Schematic

22

C. DIGITAL INPUT/OUTPUT BOARD

The use of a sonar transducer as a second sensor requires that the Zebra-ZERO PC

have on-demand, real-time access to the Ultrasonic Ranging System's ranging data. The

device used to provide this link is the CyberResearch CYDIO 24 Digital I/O Board [Ref. 5].

1. CYDIO 24 I/O Board Description

The I/O board supports the input and output of three eight-bit words via three digital

I/O ports, as well as limited interrupt generating capability all through a single 37-pin

connector [Ref. 5]. The board has three eight-bit ports that can be utilized as either inputs

or outputs. They are designated ports A, B and C. Although not used for this thesis, 2

connector pins are designated for providing limited interrupt servicing capability. The I/O

board is installed in a vacant slot on the PC's motherboard. The physical installation

provides the board with power, communication, and a data transfer link.

2. CYDIO 24 Implementation

In order for the PC and the I/O board to communicate, a base address is designated

and assigned to the I/O board. The base address is the location to which the control

software writes and from which it reads when communicating with the I/O board. The base

address is set by manipulating an eight-pin dip switch on the I/O board [Ref. 5, p. 3].

The I/O board has two additional functions that may be set on the board but are not

utilized in the applications described in this thesis. They are the wait state jumper block and

the interrupt jumper block. The wait state jumper block allows the designer to slow the PC

down when accessing the board, and the interrupt jumper allows the designer to map the

interrupt directly into the PC bus. Their use and implementation may be reviewed in the

CYDIO technical manual [Ref. 5, p. 4].

23

The CYDIO I/O board has many software-generated capabilities that require the

utilization of a library of C based CYDIO functions, and task specific C code. The I/O

board comes with a comprehensive library of functions that allow the designer to set up the

ports for input or output and to perform I/O functions [Ref. 6]. The code is designed to be

integrated into standard C programs.

The CYDIO 24 is installed in the Zebra-ZERO PC motherboard slot with the base

address set to 300H. A 37-pin cable is plugged into the board and gives it access to the

eight-bit ranging data provided by the sonar ranging system via the I/O board's port A.

The systems described in this chapter are utilized to implement the control laws that

allow manipulation of objects while the manipulator is on a moving base. It is necessary to

combine the control algorithms that are used with the force sensor and the sonar ranger into

one integrated control algorithm that works to seamlessly impose a control goal on its

environment. The design concept that address this complex problem is the Hybrid Control

Approach, discussed in the next chapter.

24

III. HYBRID CONTROL

The Hybrid Control Approach [Ref. 7] is used to address the design problem of

utilizing both a sonar ranging system and a force sensor to execute pick-and-place

algorithms while the manipulator is mounted on a moving platform. By adding the

additional sensor to the Zebra-ZERO system, the robot arm is endowed with a greater

degree of intelligence in dealing with its environment [Ref. 8]. The greater degree of

intelligence is needed to allow the manipulator to perform tasks associated with being

mounted on a moving platform. Therefore, a more complex controller must be utilized.

A hybrid dynamic system consists of a reasoner interfacing with a continuous-time

system. The discrete event system is a decision maker or controller that operates at a

strategic level. The continuous-time system is the plant and its continuous-time controller

executing the will of the reasoner.

Hybrid dynamic systems are used in a wide range of applications. For example,

hierarchical analysis of manufacturing systems [Ref. 7], and developing optimal dispatching

policies for elevator control systems [Ref. 18]. Research on hybrid systems include

development of flight control systems [Ref. 19], constrained robotics systems [Ref. 19], and

a general basis for the modeling of a wide range of motion control systems [Ref. 20].

Hybrid dynamic modeling uses rule-based process monitoring and discrete event

control to move the control state closer to the completion state [Ref. 7]. The programmer

designs a reasoner that strategically moves the controller from an initial state to completion.

However, the responsibility of controlling the manipulator is not placed on the reasoner.

The reasoner calls discrete control processes that are responsible for implementing the

continuous-time controller based on the rules imposed by the reasoner algorithm. For

example, while the manipulator is moving toward an object in free space using the sonar for

range information, the controller uses position control commands to execute the current

control law. However, once the end-effector contacts a surface, the sonar feedback is no

longer useful. The control law must change to one that uses the force sensor to detect the

25

forces imposed on the end-effector. This requires a different set of Zebra-ZERO movement

commands. The algorithm that controls the manipulator's approach to the surface is one

task-level controller, and the algorithm that controls the manipulator while it is in contact

with the surface is another task-level controller. The reasoner commands the approach

controller to begin its task. Once the approach controller detects contact it relinquishes

control of the manipulator and passes the state of the control event to the reasoner. The

reasoner then decides which discrete event controller is to be used next. In this case, it calls

the discrete controller that maneuvers the manipulator while it is in contact with the surface.

The controller also utilizes commands that position the manipulator relative to its

current position. The installed software provides a function (kin.c) that solves for the

current position of the manipulator relative to the base frame. It also provides a function

{ikiri) that solves for the joint angles that would place the manipulator at a desired position.

These functions utilize sets of equations that are specific to the Zebra-ZERO. The

equations are defined as kinematic equations. The solution of the kinematic equations are

used to position the manipulator in various modes of operation.

This chapter covers the concepts used to implement hybrid controllers to solve the

problem of controlling the manipulator while it is mounted on a moving base. The topics

covered are control system overview, plant kinematics, and controller architecture.

A. HYBRID CONTROL SYSTEM DESCRIPTION

A block diagram of the hybrid control system is shown in Figure 8. It consists of a

task reasoner, controller, D/A converter, A/D converters, external sensors, internal sensors,

power amplifiers, and plant. All elements of the control system work to produce an effect

on the environment.

The task reasoner is the decision maker for the control system. The reasoner

monitors the state of the controller to decide if the current control law (force, torque, pure

position) or control state is valid, and to command the controller to switch to another

control law or control state as necessary. The reasoner is a software implemented switching

26

routine that is interwoven into the controller software acting as the strategic part of the

controller process.

The controller implements the control law and/or control state selected by the

reasoner. The controller consists of both hardware and software working together to

perform according to the current control law. Elements that make up the controller include

the control functions, PC, A/D converters, power amplifiers, actuators, and both internal

and external sensors.

The software side of the controller schedules the control system's actions by

observing the process state and making the appropriate control commands to the actuators.

The software-driven controller gives flexibility to the robotic system. It allows the designer

to customize the controller algorithm according to a particular task.

The controller hardware executes the control process and provides feedback to the

controller software. The hardware directly interacts with the environment through the

actuators and the plant to produce the desired results.

27

PC

TASK
REASONER

'CONTROLLER

A/D
CONVERTER

Figure 8. Control System Diagram. After Ref. [7]

The sensors are utilized to report the state of the plant and the environment. The

sensors in the hybrid control system are classified as internal state sensors and external state

sensors [Ref. 7]. The internal state sensors provide feedback information that relates to the

state of the plant in the form of joint angles. The optical position encoders make up the

internal sensor system. The external state sensors provide feedback on the state of the

environment in the form of a force vector and ranging data. The force sensor and the sonar

ranger are the two external sensors used in this study.

The force sensor interfaces to the control software via the A/D converter. The A/D

converter, located in the force sensor body, digitizes the analog force and torque signals and

outputs them to the PC.

28

The power amplifiers condition and amplify the control signals sent from the motor

controller board in the PC to the motors in the plant. The amplifiers provides commanded

current (between 0 and 3 amps) that drive the prime movers in the plant. The plant consists

of the joint motors and their associated linkages. The components of the plant work

together to exert the control law on the environment.

The environment, as shown in Figure 8, denotes the entity with which the plant

interacts. The environment is operated upon by the plant and observed by the external

sensors. The end objective of the robot control system is to manipulate the environment to

produce a desired final state.

B. PLANT KINEMATICS

Hybrid control movements performed by the Zebra-ZERO control software depend

on the solution of the manipulator kinematics. The kinematic equations describe the tool

frame relative to the base frame and the base frame relative to the tool frame as a function of

a particular robot's joint angles and link lengths [Ref. 3]. In the case of the Zebra-ZERO,

the variables consist of six joint angles and six link lengths represented by fy and 1;

respectively. The mechanics and control of the Zebra-ZERO rely on the solution of two

types of kinematic problems. They are the forward and inverse kinematic solutions.

1. Forward Kinematic Solution

Forward kinematics involves solving the static, geometrical problem of computing

the position and orientation of the end-effector relative to a particular reference frame [Ref.

3]. In the context of the Zebra-ZERO, it is desired to compute the position and orientation

of the tool frame relative to the base frame, given the six joint angles.

29

The manipulator is equipped with optical position encoders that provide joint

position information to the PC . The PC utilizes this information to generate the forward

kinematics solution. During manipulator operations, the servo control software is

constantly running to generate smooth paths, operate the force sensor, monitor the current

position of the arm, and to continuously update the commanded position for each of the

joint motors [Ref. 1, p. 7]. Through all of the intensive calculations the control system must

always know the location of the tool frame with respect to the base frame. The relationship

of the tool frame relative to the base frame is described as a transformation matrix that is a

combination of a position vector and a rotation matrix.

The position vector represents the tool frame, {B}, relative to the base frame, {A},

and is annotated as AP. The position vector is simply a vector that describes a point in

space. The base of the vector is at the origin of the base frame and its tip is at the origin of

the tool frame. The position vector is written as

P =
Px

Py

Pz

(1)

where the individual elements describe the location of the tool frame in x, y, z coordinates.

The orientation of the tool frame relative to the base frame is described by three unit

vectors that give the principal directions of the tool coordinate system relative to the base

frame. For convenience, the three vectors are written as one 3x3 matrix called the rotation

matrix. The rotation matrix may be described in short-hand, unit vector, or matrix notation

forms as follows:

)R = [AXB %t
AZB} =

'12

r21 r22

'13

'23

'31 r32 r33.

(2)

Given the position vector and the rotation matrix described by Equation (1) and

Equation (2), an object described in an arbitrary coordinate frame, BP, may be described or

30

mapped in the base coordinate frame. This mapping is achieved by describing the position

of the origin of the arbitrary frame relative to the base frame described by AP, and by

describing the orientation of the arbitrary frame relative to the base frame described by £ R.

The translational mapping is described by the equation

AP=aP+A0B, (3)

where A0B is the location of the origin in the tool frame relative to the origin of the base

frame. The rotational mapping is described by the equation

AP=*RBP. (4)

Equations (3), and (4) may be combined into one equation that describes both translational

and rotational mappings as follows:

AP=AR BP+A0B. (5)

Figure 9 provides a visual representation of the transformation between coordinate systems.

31

Figure 9. Translation and Rotation Translation. After Ref. [3]

To make the mapping a matrix operation, Equation (5) may be written in compact form as

p A»K
Ao Bp

1 0 0 0 1 1 (6)

where a 1 is added as the last element of the 4x1 vectors and the row vector [0 0 0 1] is

added as the last row of the 4x4 matrix for conceptual convenience. This form is that of a

homogeneous transformation matrix [Ref. 3].

32

Now that the transformation from one coordinate system to another has been made,

the same concepts will be used to specify one frame relative to another. The notation used

for describing frame {B} relative to frame {A} is ^T, where T is a transformation operator

that rotates and translates a vector BP to compute the new vector AP [Ref. 3]. The

transformation operator is described as

T =
;R or

0 0 0 1 (7)

Therefore, equation (6) may be written as

T=AT Bp
(8)

Transformation operators may be combined to translate vectors across multiple

frames. For example, if the transformation matrices are known across frames {A}, {B},

{C}, and {D}; the transformation of a vector, DP, defined in frame {D} to frame {A} is

accomplished utilizing the following:

'P=*T *T C
DT

DP= A
DT

DP, (9)

where the combined transformation matrix is defined as

D1 ~ Bl Cl D1" (10)

This same concept is used to transform the location of the tool frame of the Zebra-

ZERO into base frame coordinates. For a six-link robot arm the combined transformation

matrix is described as

°6T=°1T \T 2
3T

3
4T

4
5T

5
6T (11)

33

Since the link distances and the angles made between the extensions are known

constants imbedded in the Zebra-ZERO software, and the optical encoders provide the joint

angles, all of the transformation matrices contain known values. Therefore, the elements of

the combined transformation matrix may be computed by multiplying the individual link

transforms. The end result of the multiplication i& defined as the kinematics of the

manipulator.

The kinematic solution used in the Zebra-ZERO is found by utilizing the forward or

direct kinematic method described above in [Ref. 3]. The Zebra-ZERO kinematic solution

provided by the Integrated Motions, Inc. [Ref. 1, p. 65] is as follows:

where

T =

Ml x12

'21 r22 r23 Pv

*31 *32 '33 Vz

0 0 0 1

rn =c1c23(c4c5c6 — s4s6) — c,s23s5c6 —Sj(s4c5c6 +c4s6),

r21 = s,c23(c4c5c6 — s4s6) — s1s23s5c6 +c,(s4c5c6 + c4s6),

r31 = S23*.C4C5C6 ~~ S4S6) "*" C23S5C6'

r12 = -c,c23(c4c5s6 + s4c6) + c,s23s5s6 + s,(s4c5s6 - c4c6),

r22 =—S1C23VC4C5S6 + S4C6/ + S1S23S5S6 — Cl(S4C5S6 — C4Cö)'

r32 = ~S23 (C4C5S6 "*" S4C6) — C23S5S6 '

r13 — —CjC23C4s5 — c^^Cj + S[S4s5,

r23 = —SjC23c4s5 — s,s23c5 — CjS4s5,

r33 = — s23c4s5 + c23c5,

PX=
C

I(MC2-12
S

23)»

(12)

34

Py =S,(1]C2 -12S23),

Pz = LXS2 +/2C23 ,

and

*,=sin(6,.),

c,=cos(e,),

c,.;=cos(6,. +e;),

.y,.,=sin(e,.+e,).

The Zebra-ZERO servo control software is actively running while the manipulator is

energized either to position the manipulator in response to a call to a positioning function or

to maintain the manipulator in its current position [Ref. 1]. The forward kinematic solution

is utilized to provide the position and orientation feedback required to accurately place the

tool frame. The forward kinematic solution (kinx) is also available as a utility function to

be utilized in general manipulator control algorithms.

2. Inverse Kinematic Solution

Manipulator control not only relies on the ability to compute the current position

and orientation of the tool frame relative to the base frame, but it also requires the ability to

move the tool frame to a desired configuration and coordinate position relative to the base

frame according to the control law. This problem involves solving the inverse kinematics

of the manipulator. The problem is posed as the following: Given a desired position and

orientation of a tool frame {B} relative to the base frame {A}, calculate a set of joint angles

which will attain this position within the work space of the manipulator [Ref. 3].

The solution to the inverse kinematic problem is more involved than the forward

kinematic solution. The forward kinematic solution has a unique solution for the given

joint angles. However, the inverse kinematic solution has multiple solutions if the desired

35

configuration is within the manipulator's dexterous workspace, and has no solution if it is

not [Ref. 3]. For example, a manipulator with six joints may have as many as sixteen

possible solutions [Ref. 10]. There are no general algorithms that can produce a solution to

this nonlinear problem. However, a special case is engineered into the Zebra-ZERO that

produces a closed-form solution.

Piper's solution reduces the number of solutions to the inverse kinematics problem

by requiring that the last three axes intersect [Ref. 11]. Piper's solution reduces the number

of possible solutions to the last three joint angles to two. Therefore, the number of solutions

for the manipulator is twice the number of solutions found for the first three joints [Ref. 3].

The Zebra-ZERO solves the inverse kinematics problem by utilizing an algebraic

solution to solve the first three angles then utilizing a geometric solution to solve the last

three angles.

The following is the algebraic, closed-form solution to the inverse kinematics.

Given P is the position vector that describes the desired location of the tool frame origin in

the base frame coordinate frame, where

P =
Px

Py

Px.

(13)

we may compute the distance from the origin of the base frame to the origin of the wrist

frame as

r = VFP. (14)

For a solution to exist the inequalities

36

r + 0.1<l, +12 (15)

and

r-0.1>/,-/2 (16)

must be true. If Equations (15) and (16) are true, the solution is within the dexterous

workspace of the manipulator. Next, the distance rxy projected into the x-y plane is

computed as

Let

*xy
:VPX+P (17)

a = Tan'

ß = Cos~l

J = Cos'1

(pA
[pj

j

(l? + r2-l2
2)

I 2r/, J

(ll+ll-r2^
I 2 M^2 j

(18)

(19)

(20)

Using P and Equation (18) through Equation (20), the first three joint angles are solved as

follows:

6, = Tan -i

KPXJ

92 =a + ß,

(21)

(22)

37

83=Y-1.5TC. (23)

Next, the last three joint angles are determined geometrically. The unit vector normal to the

plane of the arm is calculated as

n =
sin(8,)

-cos(9,)
0.0

(24)

Then, the projected vector along the J4 axis is solved as

q =

cos(e2+e3+f)cos(e1)
cos(02+e3+f)sin(e,)

0

then normalized to

q = -
qq

(25)

(26)

the unit vector along the J4 axis. The unit vector normal to n and q is then calculated as

s = ii®q. (27)

* *
Next, x and y , the wrist z-axis projections on s and n respectively are computed utilizing

the equations

and

x*='z; s,

y*=z;n

(28)

(29)

38

Where ' ZA is the unit vector in the direction of the z-axis in the base frame. Angles 04 and

6s are calculated as

0. = Tan'1
i

\x J

and

e5 = Cos"I(,z;q).

Finally, the unit vector pointing along the J5-axis is calculated as

(30)

(31)

n =

cos(04)n,-sin(04)s,

cos(04)n2-sin(04)s2

cos(04)n3-sin(04)s3

(32)

The angle 06 is calculated using Equation (32) and the two unit vectors pointing in the

direction of the x and y-axes, 'XA and'YA respectively, in the base frame coordinate

system as follows:

06 = Tan" (33)

The Zebra-ZERO servo control software utilizes the inverse kinematic solution to

position the manipulator in response to calls to positioning functions or to maintain the

manipulator in its current position [Ref. 1]. The inverse kinematic solutions are utilized to

provide the joint angles required to place the tool frame in a desired position and orientation

based on the control solutions calculated by the control software. The inverse kinematic

39

solution (ikinx) is also available as a utility function to be utilized in general manipulator

control algorithms.

C. CONTROLLER ARCHITECTURE

Because the control environment utilizes a force sensor and a sonar ranger, the

controller cannot employ a single generic control law to finish a process. Therefore, the

manipulator control model is built according to the process properties described by each

discrete controller. The hybrid controller architecture illustrates how the software is used to

implement multiple control laws. The controller architecture models the control law in

phases as a state diagram [Ref. 7].

Figure 10 displays an example of a typical software controller model. The elements

of the controller are the reasoner, phase controllers (PCI - PC3), and subphase controllers

(SPC1 - SPC2). Each element of the controller model is a software implemented task. The

control objective is accomplished by programming the reasoner to plan and schedule the

order of events that will accomplish the control goal. Individual events are represented by a

phase controller. The phase controller (PC) is responsible for executing a complex portion

of the control process. For example, a phase may consist of picking up an object while

another might be moving the object from one location to another. Each phase controller

may be composed of subphase controllers (SPCs). The SPCs are the more rudimentary

functions that aid in accomplishing the task assigned to a particular PC. SPCs may perform

tasks such as acquiring sonar ranging information or executing pure position control

functions such as open-loop manipulator positioning.

40

Figure 10. Software Controller Model

Transitions between processes are governed by the state or condition of the plant

and environment. These conditions are defined as maintaining, enabling, and disabling

conditions [Ref. 9]. Maintaining conditions are observed states that maintain the controller

in the current process. Enabling conditions are observed states that cause the controller to

transition to another state. Disabling conditions impose a constraint on the controller such

that if a particular plant state is encountered the process or control event is terminated.

Design of a software controller utilizing the architecture described above is a top-

down process that enables the programmer to concentrate on one process at a time. The

steps of the design process are as follows:

41

• Establish an overall control goal and define the sequence of events to be

coordinated by the reasoner.

• Develop events that bring the current state closer to the desired state and define

them as processes, subprocesses, and process transitions.

• Implement the reasoner, processes, subprocesses, and process transitions in a

complex hybrid controller code as programs and functions.

The hybrid control approach described in this chapter is the design concept used to

implement the control algorithms that enable the Zebra-ZERO system to execute various

control objectives while it is mounted on a moving platform. The control algorithms utilize

functions contained in the Zebra-ZERO software library, integrated in task-specific code, to

control the manipulator. Chapter IV introduces the concepts used to develop and execute

manipulator control algorithms.

42

IV. ZEBRA-ZERO SOFTWARE OVERVIEW

The Zebra-ZERO software package includes a library of compiled robot control

functions, demonstration programs, and a Borland Turbo C++ compiler. The source code

for the demonstration programs are provided to give some insight into writing the C code

for the Zebra-ZERO. For the novice Borland C++ user, a first attempt at developing a

running program may be quite challenging. However, once the basic methodology of

developing a project file is understood, the user may utilize the Zebra-ZERO function

library to develop clever programs and original functions.

A. TURBO BORLAND C++ OVERVIEW

The Zebra-ZERO code is written using Turbo Borland C++, version 3.0. The intent

of this section is to provide the programmer with enough basic information to start

programming in the Borland environment with the least amount of initial time investment.

It is expected that the programmer has some background in C programming. It should be

noted that, although Turbo Borland C++ has C++ programming capability, robot.lib may

only be accessed utilizing the C compiler. Kernigham and Ritchie [Ref. 12] and the Turbo

C++ User's Guide [Ref. 13] are excellent technical references for programming in C and

utilizing the Borland software respectively.

The Borland C++ software is launched by typing TC at the DOS prompt within the

ROBOT directory. The Borland programming window, is defined as the Integrated

Development Environment (IDE). It contains menus at the top and bottom of the screen

with a gray working field. The IDE contains all that is needed to write, edit, compile, and

debug a program [Ref. 13].

43

1. Opening an Existing Project

To appreciate the project format utilized by the Borland software, the programmer

must first understand the purpose of the project file. The IDE places all information

required to build and run a program into a binary project file whose extension is .PRJ. The

project file contains the settings for the compiler, linker, make, and librarian options as well

as the directory paths, lists of all files that make up a project, and the Turbo Assembler

translator [Ref. 13, p. 34]. The Borland compiler automatically takes all the programs and

files in the project window and compiles, links, and creates the executable file. Therefore,

constructing a project file in the DDE frees the programmer from the administrative tasks of

constructing and modifying the configuration file used to build the programs defined in a

project file [Ref. 13].

Opening a project file allows the programmer to view and edit existing files, and to

create new files. To open an existing project, select the following menu items from the top

of the IDE:

Project I Open Project.

For instructional purposes, select ARMTEST.PRJ from the Open Project dialog box.

After opening the project file, additional windows may or may not be displayed.

The most important window for the moment is the Project window. It may appear at the

bottom fourth of the IDE. If the Project window does not appear at the bottom of the IDE,

select

Window I Project.

The ARMTEST.PRJ project window is then displayed at the bottom of the IDE. The

window should list the files armtest.c and robot.lib.

44

Double-clicking on armtest.c will display the executable source code. The source

code may be edited and modified from this screen. However, double clicking on robot.lib

will display a compiled code that is useless to the programmer. All Zebra-ZERO functions

are compiled in robot.lib with no source code provided.

As an introduction to the capabilities of the Borland window, the programmer is

invited to execute this code from within the Borland environment. To execute this program

select

Run I Run.

The program should run as if it were executed from the DOS prompt and upon completion

return to the IDE.

2. Creating a Project file

In the following example, ARMTEST.PRJ is used as the model for creating a

project file. First, create a new project file name by selecting

Project I Open Project.

Type a project name of choice in the Open Project field. For example, the following would

be acceptable:

MYTEST.PRJ.

After typing a project name press enter. A project screen with the project name will be

displayed at the bottom of the IDE. Next, from the bottom of the IDE, select

45

Add.

A list of all the C coded programs are displayed in the window. If not type

*.C

in the Name line and press Enter. From the list of C source codes select armtest.c and

select OK. The program name armtest.c should appear in the project window. Using the

same procedure add robot.lib to the project menu.

Next, critical default settings must be set to ensure that the files are properly

compiled and linked. This is done by opening the Code Generation window and setting the

parameters as follows:

Selecting the following menu items in the IDE:

Options I Compiler I Code Generation.

Ensure Large is selected from the Memory Model dialog box, Default for memory model

is selected form the Assume SS Equals DS dialog box, and Treat enums as ints is selected

from the Options dialog box. Then, select OK .[Ref. 13]

Next, Turbo C++ must compile and link all the files in the project. This is done by

selecting

Options I Build All.

With the project compiled and linked the programmer now has an executable program. To

test the project select

Run I Run.

46

The project may also be executed at the DOS prompt within the ROBOT directory. For

example, for the project file MYTEST.PRJ, the programmer types MYTEST then presses

Enter at the DOS prompt. The program mytest.c should perform the identical function as

armtest.c.

B. EXECUTING FACTORY-PROVIDED PROGRAMS

The Zebra-ZERO has several ready-to-run programs that are included in the

ROBOT directory of the PC hard drive. There are programs that execute system tests,

program demonstrations, and function familiarization. The computer automatically enters

the ROBOT directory at startup. The programs are run by typing the executable and

pressing Enter.

1. Testing the Zebra-ZERO System

The program armtest.c is utilized to test the operation of the Zebra-ZERO system.

However, it is recommended that the first-time user execute ARMTEST to obtain a basic

working understanding of the Zebra-ZERO. The program walks the user through some

basic operational characteristics of the system. Furthermore, the source code is an excellent

example of a typical Zebra-ZERO interactive algorithm.

The program starts out by allowing the user to test the operation of the force sensor.

The user is prompted to apply forces and moments to the gripper. A bar-graph presentation

displays the magnitude of the applied forces/moments.

After the force sensor is tested, the user is prompted to proceed to the next display

where the individual joint encoders are tested. All six joint angles as well as a matrix

47

containing the kinematic solution for the location of the tool frame relative to the base

frame are displayed.

Finally, the arm is tested through various dynamic movements. The user is

prompted to prepare the arm for maneuvering out of its nest (support bracket) and for the

power switch to be depressed. The arm then moves to the ready position where it awaits the

user's acknowledgment to demonstrate movements of all axis motors and the gripper. After

that, it returns to the nest.

2. Maneuvering In and Out of the Nest

There are two programs provided that maneuver the arm in and out of the nest.

They are homerobot.c and backhome.c. Both may be executed at the DOS prompt within

the robot directory. The source codes are short and execute one specific task.

The program homerobot.c maneuvers the manipulator from the nest to the ready

position exclusively. The arm must be in the nest before the program is executed or the arm

will shut itself down after attempting to find the nest.

Executing backhome.c returns the arm to the nest from any position within the

robot's workspace. This command is best utilized during program development and

debugging. It gives the user the ability to leave the arm in a position for analysis at the end

of a program. The user may then use backhome.c to return the arm to the nest for the next

run.

3. Utilizing the Command Shell

Executing the command INTERACT at the DOS prompt in the Robot directory

initiates the Interact command shell. The shell allows the user to execute a number of the

Zebra-ZERO library commands, available in robot.lib, using single line commands. The

48

user may use the shell as a learning tool to gain understanding of some of the more cryptic

control functions. It may also be used as a program development and planning tool.

4. Reading Arm Status

The program status.c is a valuable programming and motion planning tool. It

displays the manipulator's current status and control settings. This information may be used

for determining approximate joint angles or for establishing the tool frame that places the

manipulator at a desired location or orientation for use within a program. It can only be

called when the arm is in a static condition. However, the manipulator does not have to be

energized for the program to return data. Executing status.c displays the position and

orientation of the tool frame relative to the base frame, the joint angles, the status of the

computer generated flags, and the status of the user generated flags. All information is

displayed on a single screen display.

C. IMPLEMENTING POSITION CONTROL MODE OF OPERATION

1. Description

Position control mode is the traditional mode of operation for commercial robots. In

this mode the controller positions the manipulator in a specific coordinate position

according to the control law in affect. The trajectory of the arm is specified by a series of

via points through which the arm passes, and a final goal point where the arm will come to

rest. Although position control assumes that the manipulator is not constrained, it can be

used to position the manipulator in a partially constrained environment where only slight

forces are imparted on a rigid surface. The following examples demonstrate these concepts.

49

2. Demonstration of Position Control Mode of Operation

The program ajest demonstrates the operation of the Zebra-ZERO in pure position

control mode of operation. It utilizes commands that position the manipulator according to

a specified 6x1 joint vector, or as a Cartesian frame locating the tool frame relative to the

base frame. The program moves the manipulator through its workspace utilizing the

following position control commands:

cmove

hjog

jjog

jmove

jog

sjmove

Details of the operation of these function may be found in the Zebra-ZERO operation

manual [Ref. 1]. The source code for ajest is listed in Appendix A.

3. Example Program Utilizing Force Threshold Sensing

The program contour.c utilizes force threshold sensing and position control to guide

a tool, such as a pencil, along a contoured surface. The program demonstrates the Zebra-

ZERO's ability to implement the force sensor to detect changes in the environment and

adjust the tool frame according to the detected changes using position control. The source

code is listed in Appendix A.

The program contour.c starts out by placing the manipulator in the ready position

and then opening the gripper. The user is then prompted to place the tool in the open

fingers of the gripper and press Return. The gripper fingers then close on the tool and

50

pauses for the user to indicate that the tool was properly placed. Next, the routine positions

the manipulator so that the base plane (Jl axis) is at -90° and the gripper is positioned 15

cm from the mounting base and 15 cm above the plane containing the mounting base. The

tool is then slowly lowered to contact the surface. It is recommended that the surface be

slightly compliant to reduce the risk of damaging the manipulator. The tool is incrementally

lowered toward the surface at a rate of approximately .1 cm/sec. After each movement, the

force sensor is polled to determine if the surface has been detected. When the surface is

detected, the manipulator's descent is terminated. The controller then moves the tool frame

forward relative to the base frame. After each incremental move the controller polls the

force sensor to detect if the force applied to the tool is within a predetermined threshold. If

the force is too small the tool is lowered. If the force is too large the tool is elevated. If the

measurement is within the threshold, the tool is moved forward. This process is repeated

throughout the execution of the program allowing the tool frame to comply to the contour of

the surface as it is moving forward. The task terminates after the manipulator has traveled

approximately 15 cm. The manipulator returns to the ready position, relinquishes the tool

when prompted, then returns to the nest.

D. IMPLEMENTING FORCE CONTROL MODE OF OPERATION

1. Description

Force control mode of operation allows the programmer to utilize the Zebra-

ZERO's force control sensor to execute a task. It is implemented using a specific set of

commands available in robot.lib.

Force control mode utilizes the force sensor combined with the end-effector to exert

a specified force on the environment. The exerted force is independent of the position of

the end-effector and relies on the programmer-specific force/torque vector. This mode is

51

intended to be used when the end-effector is constrained so that in cannot move freely in

space [Ref. 1]. It should also be noted that the manipulator will only comply to forces

exerted on the tool side of the force sensor.

The following Zebra-ZERO library commands are utilized in force control mode of

operation:

zero_force

set_bias_force

set_damping

set_force_threshold

set_stiffness

stiffness_off

push_with_bias

2. Example Program Utilizing the Command push_with_bias

In order to command the manipulator to apply a user-defined force, a standard

sequence of commands must be issued. Their order of execution is irrelevant with the

exception that push_with_bias must be executed last. When push_with_bias is executed the

robot is placed in pure force control mode of operation.

The function push_with_bias has only one argument. It is the duration that the

specified force is to be applied in seconds. However, push_with_bias utilizes other

functions that are designed to govern the push_with_bias force control behavior.

The function set_damping designates a damping constant for all force controlled

motions [Ref. 1, p. 38]. The input argument, damping, is a floating-point number between

0.0 and 1.0. The maximum damping occurs when the damping value is set to 0.0. Unstable

52

motions warrant lowering the damping value while sluggish motions warrant increasing the

value.

The function set_stiffness is used when the Zebra-ZERO is in stiffness control mode

of operation, a subset of force control mode. Stiffness control is used to control both

position and force at the same time while the arm is unconstrained in the force control mode

[Ref. 1]. The programmer is able to specify the desired behavior of the end-effector in the

tool coordinate axes. A 6x1 force vector is used to assign stiffness along the tool coordinate

axes as well as about their rotational axes. For example, if it is desired to move the end-

effector along a surface of which the contour is unknown, the stiffness may be set so that the

end-effector is compliant along the Z-axis and stiff to applied forces along all other axes and

along all rotational axes. Therefore, set_stiffness will control the deflection of the end-

effector while it is moving through space while in stiffness control mode which is used

when executing push_with_bias.

The function setjorcejhreshold is utilized to set the parameters that protect the

arm in the event of unexpected collisions, or as a safety feature to protect object(s) being

operated upon by the end-effector [Ref. 1, p. 38]. If the magnitude of any force/torque

exceeds the corresponding value in the threshold vector, the current motion is aborted. The

function's input is a six element force vector that describes the maximum forces and

moments that may be applied to the end-effector. The values implemented by calling

setjorcejhreshold are utilized in every Zebra-ZERO function. The system is constantly

checking for forces/torques that exceed the designated envelope. Although the programmer

may explicitly assign the values contained in the threshold vector, the Zebra-ZERO

software will not let the force vector exceed the default values that are factory installed in

robot.lib. The default values are defined as MIN_THRESHOLD within the library.

The function set_biasJorce is used to set the value of the force and the moments

that are applied at the end-effector. The input is a six-element vector that describes the

magnitude of the forces and moments that will be applied in force control mode of

operation.

53

The force sensor detects the sum of all forces and torques that are applied to it.

Therefore, it will superimpose the forces that are applied by a tool or object that is handled

by the end-effector as well as the force due to the mass of the end-effector. Furthermore,

these forces/torques, which are gravity and mass dependent, change with the orientation of

the end-effector. In most cases it is not desirable to include the superposition of the

torques/forces in the measurement of the applied forces. The function zerojbrce reads the

force sensor to establish an offset from which all subsequent forces are relatively measured

[Ref. 1, p. 33]. The offset value is set in the current tool coordinates. Good engineering

practice demands that as the tool coordinates change, subsequent calls to zerojbrce are

made.

Finally, after all the previously mentioned functions have been implemented, the

call to push_with_bias can be made. Execution of push_with_bias results in the application

of the force vector defined in setjbiasjorce with the parameters set by calls to zerojbrce,

set_damping, setjorcejhreshold, and setjstiffness. Implemented correctly,

push_withj>ias can apply a desired force in a vector-defined direction or in the direction of

the moments about the coordinate axes in the tool coordinate frame. An understanding of

these functions are critical to utilize the force control mode of the Zebra-ZERO.

The program force.c, contained in Appendix A, implements the key force control

functions and allows the user to experiment with various force control parameters. The

algorithm first moves the arm to the ready position. Next, it sets the initial force threshold,

stiffness, bias, damping and push time. It then gives the user an opportunity to change the

stiffness and damping vectors as well as the bias force and the amount of time the force is

applied. After all parameters have been entered, push_withjbias is executed. The

interactive portion of the program is iterative and allows the user to keep or change

parameters each time it is run. When the user is finished, the program may be exited when

prompted.

54

E. SONAR RANGING SYSTEM IMPLEMENTATION

The sonar ranging system is necessary to position the manipulator in close proximity

of the object to be manipulated. The sonar ranging data is read by the control algorithm and

is used to position the manipulator utilizing position control commands.

The program ranger.c, listed in Appendix A, is a simple program that extracts the 8-

bit ranging information from the digital I/O board and displays the computed range on the

monitor. First the program configures the I/O board to input data from port A. Then it

reads the information available at port A and logically inverts it. The inversion is executed

because the ranging data is sent to the I/O board as negative logic. Next, the information is

converted to centimeters and is displayed on the monitor. The binary representation of the

range data is also displayed. The readings are taken continuously until the user presses a

key to end the program.

The Zebra-ZERO programming software may be utilized to structure a broad range

of control algorithms. The following chapter describes the algorithms that implement these

control concepts in hardware simulations of the Zebra-ZERO system mounted on an

autonomous vehicle.

55

56

V. HARDWARE SIMULATIONS ON A MOBILE BASE

The integration of the Sonar Ranging System with the Zebra-ZERO Force Control

Robot facilitates hardware simulations of a manipulator that must interact with its

environment while it is mounted on an autonomous vehicle. The mobile vehicle is

simulated by utilizing a cart as the mobile base. The integrated manipulator system

mounted on the cart is referred to as the manipulator platform. The sonar provides the

range data that allows the manipulator control algorithm to detect the target and then

approach it without damaging the manipulator platform or the target. Once the sonar sensor

has guided the manipulator to where it contacts the target object, the controller utilizes the

force sensor to operate on the target.

Controlling the manipulator while it is mounted on a moving base requires the use

of software that is able to switch between force and position control laws to accomplish the

ultimate control goal. Two project files are presented that test the feasibility of

implementing the Zebra-ZERO system on a moving platform. CONTROL1.PRJ utilizes

algorithms that test the ability of the manipulator platform to interact with a target object

assuming that the target object is stationary. HYBRID2.PRJ utilizes algorithms that test the

ability of the manipulator platform to interact with a target object assuming that the target

object is in motion.

A. STATIONARY TARGET HARDWARE SIMULATION

1. Controller Description

CONTROL1.PRJ tests the ability of the Zebra-ZERO to perform a complex pick-

and-place task where the manipulator is on a mobile delivery platform and the target object

57

is stationary. This type of control algorithm may be adapted to perform tasks in a land-

based environment. Variations of this algorithm could be used for ordinance disarmament,

chemical spill evaluation and cleanup, and other related tasks.

The project file CONTROL1.PRJ executes a control task that entails grasping a peg

located in a hole and placing it on a flat surface in front of the hole. The physical

configuration of the peg and the hole is known by the control algorithm, but their exact

location is not. The following constraints and assumptions are in effect:

• The manipulator is mounted on a cart, referred to as the delivery vehicle.

• The delivery vehicle may be moved during runtime to place the peg and hole

assembly within the manipulator's work space. However, the delivery vehicle

must be stationary before the peg extraction sequence begins through program

termination.

• The sonar transducer is mounted on the manipulator's rotating base carriage and

is centered 24 cm above the mounting surface, 7 cm forward of center and 7 cm

right of center.

• The hole assembly is a square cylinder that is 3 inches high, with 2 inch sides.

The hole is centered at the top of the cylinder.

• The peg is initially located in the hole assembly with its exposed portion

consisting of a 1 inch cube, and its hidden portion consisting of a round cylinder

1 inch in diameter extending 1.5 inches into the hole.

• The approximate bearing of the hole assembly is known. Practically, the

bearing could be fed to the control algorithm from a video camera.

The Control algorithms used in CONTROL1.PRJ are control!.c which is the

reasoner, and phasel.c which contains the phase and subphase controllers. The source

codes are listed in Appendix B.

58

The reasoner is responsible for managing the phase controllers listed in phasel.c

and the control flow is modeled in Figure 11. Execution of controll.c proceeds as follows:

First, the manipulator is placed in the ready position by executing PCI. After

which, PC2 is immediately executed placing the manipulator at a pre-programmed bearing

and configuration to facilitate a safe approach to the target. PC2 then repeatedly calls SPC1

to acquire the range to the peg. PC2 commands the manipulator to close the distance to the

peg and hover 10 cm above it. The platform must be static before the peg may be removed.

Therefore, PC2 checks that the distance between the platform and the peg has been steady

for 8 seconds before attempting to remove the peg. If the platform does not stabilize after a

programmed number of attempts, PC2 terminates and the reasoner executes PC4 which

places the arm back in the nest. If the manipulator is able to successfully place the gripper

and the platform is steady, PC2 terminates and the reasoner calls PC3 which positions the

gripper 1 cm in front of the peg. PC3 then calls SPC2 which slowly moves the gripper

forward to contact the peg. If contact is not detected, SPC2 and PC3 terminate. The

reasoner will then call PC4. If contact is made, SPC2 saves the exact location of the peg

and terminates. PC3 then executes SPC3. SPC3 controls the task of extracting the peg

from the hole. If the force sensor does not detect that the peg was extracted, SPC3 and PC3

terminate, then the reasoner calls PC4. If the peg is extracted from the hole, SPC3

terminates and PC3 calls SPC4 which places the peg in front of the hole assembly. SPC4

terminates when the force sensor detects that the peg has been placed in front of the peg

assembly. After which, PC3 terminates and the reasoner calls PC4.

59

Figure 11. Program controll.c Control Model

2. Results

After making several adjustments to the controller, it was able to consistently

command the manipulator to retrieve the peg. As the manipulator platform was pushed

toward the peg the controller was able to effectively position the gripper so that it

maintained its position 10 cm above the peg. Perturbations imposed on the manipulator

platform revealed that the controller was able to reposition the gripper so that it remained

above the peg.

During early testing, the manipulator displayed sporadic gyrations while making its

approach to the peg. The magnitude of these gyrations were on the order of 10 cm and

occurred approximately every 10 to 15 sonar readings. Since three range measurements are

60

taken per second, the gyrations were frequent enough to cause the program to abort 50% of

the time. The gyrations were caused by sporadic noise experienced by the sonar ranging

system. Since the noise was infrequent, the problem was solved by first requiring SPC1 to

provide a new sonar reading after a 3 ms if a large change in range was detected. Second,

the average of the five most recent measurements was used as the error signal. The second

reading reduced the occurrence of the gyrations to approximately every 200 to 300

measurements. Averaging the five most recent measurements smoothed the magnitude of

the gyrations to less than 1 cm.

During testing, the sonar ranging data began to experience serious noise.

Investigation of the problem revealed that the noise was caused by the system that drives the

turret (Jl axis). The transducer experienced severe interference when placed within a foot

of the manipulator. Additionally, the noise only occurred if the turret motor was enabled.

After consulting with Integrated Motors Inc. technical support, it is suspected that the turret

motor power amplifier was thermally stressed and was slowly degrading. During the

degradation period before catastrophic failure, it is possible that the power amplifier emits

components of the PWM control signal. The problem is expected to be solved by replacing

the power amplifier card.

It was also noted that the performance of the gripper was slowly degrading.

Symptoms of this problem included intermittent gripper failure and weakened motor torque.

However, replacing the gripper power amplifier should solve this problem.

B. MOVING TARGET HARDWARE SIMULATION

1. Controller Description

CONTORL2.PRJ tests the ability of the Zebra-ZERO to perform a complex pick-

and-place task where the target on which the device is being placed is in motion. This type

61

of control algorithm may be adapted to perform tasks in an underwater environment where a

hermetically sealed version of the Zebra-ZERO is mounted to a delivery vehicle. The

manipulator may be tasked with neutralizing mines, cleaning or inspecting the hull of ships,

and many other similar applications.

The project file CONTROL2.PRJ executes a control algorithm that grasps a device

whose location and configuration is known by the control algorithm and places it on a

vertical surface where the distance between the manipulator and the surface may be

constantly varying. The following constraints and assumption are in effect:

• The manipulator is mounted on a cart, referred to as the delivery vehicle.

• The delivery vehicle is considered to be part of the manipulator structure for this

discussion. The manipulator/mobile cart platform is referred to as the

manipulator platform.

• The sonar transducer is located on the delivery vehicle 60 cm below the base of

the manipulator and is stationary relative to the manipulator.

• The initial location of the object to be placed, referred to as the device, is on the

platform making it stationary relative to the manipulator, and it is within the

manipulator's workspace.

• The surface on which the device is to be placed must be vertical and is referred

to as the target.

• The device utilizes a magnet-and-spring mechanism that requires a force to be

applied to the device while it is placed on the target in order to affix it to the

target.

• The target must be ferrous.

• The sonar transducer only provides range information for axial movement.

Lateral and vertical movements are not detected.

62

The Control algorithms used in HYBRID.PRJ are hybridl.c which is the reasoner

and phasel.c which contains the phase and subphase controllers. The control algorithm is

modeled in Figure 12 and the source code is listed in Appendix C.

The reasoner is responsible for managing the phase controllers contained in

phasel.c and is executed as follows:

First, the manipulator is placed in the ready position by executing PCI. After

which, PC2 is immediately executed placing the manipulator at a pre-programmed bearing

and configuration to facilitate a safe approach to the target. PC2 then repeatedly calls SPC1

to obtain ranging data to the target. PC2 utilizes the range information to determine if the

vehicle is in range of the target, and if the environment is conducive to executing the control

task. It does this by determining if the target is within the manipulator's workspace and if

the delivery vehicle can maintain a safe operating distance to the target. For experimental

purposes, PC2 prompts the user to manually move the cart to the proper range. Practically,

the prompts would be control signals to the vehicle's prime mover. If the delivery vehicle is

able to keep the target within the designated range of 65 to 75 cm for 8 seconds, PC2

terminates, and the reasoner calls PC3. If the vehicle is not able to maintain a safe working

distance, after a designated number of attempts, PC2 will terminate and the reasoner will

call PC8 which returns the manipulator to the nest. PC3 executes a control algorithm that

commands the manipulator to grasp the device and move it clear of the platform. If the

device is not retrieved, the reasoner will call PC3 for a second attempt. If it fails the second

time, PC8 is called to return the manipulator to the nest. Once the device is successfully

retrieved, the reasoner calls PC4 to check if the environment is stable enough to place the

device. If the environment is not stable, PC7 is called to return the device to its staging

area on the platform. After which PC8 is called to return the manipulator to the nest. If the

environment is stable enough, PC5 is called to control the manipulators approach to the

target. PC5 positions the device 20 cm from the target of interest and closes the distance at

approximately 1 cm/sec. While the approach is being made, PC5 maintains the device at

the commanded range even if the distance between the platform and the target is varying. If

63

the error between the command distance and the device is greater than 2 cm the approach is

abated, otherwise the approach is continued. After a designated number of attempts to

approach the target are made, PC5 will terminate and the reasoner will execute PC7 and

PC8 respectively. When contact is made, PC5 is terminated and the reasoner calls PC6.

PC6 utilizes the Zebra-ZERO's force control mode to apply a force to the device for 2.5

seconds. PC6 terminates after the gripper releases and clears the device. The reasoner then

executes PC8.

Figure 12. Program controU.c Controller Model

64

2. Results

The algorithm contained in controU.c performed extremely well. The controller

was able to consistently place the device on the target with reasonable random perturbations

where the target was kept within the manipulator's workspace. However, this simulation

revealed limitations in the Zebra-ZERO's ability to respond to changes in range.

The manipulator's response varied with the distance the tool frame had to travel

between movements. While the Zebra-ZERO is executing a manipulator movement

function it freezes all other software functions until the movement has been completed.

During this time, a relatively large range error may develop.

This limitation was analyzed to determine how much the response of the

manipulator could be affected. The movement commands used to position the manipulator

in controU.c were run at full speed using the program mvjime.c which is listed in

Appendix A. The average time over 20 positioning commands at the same travel distance

were tabulated for ranges between 0.0 and 20 cm. Figure 13 displays a graph of the

experimental average time it takes to position the tool frame versus the distance to be

traveled. The graph reveals that the control system could be blind to changes in position

from 0.8 to 1.4 seconds for variations in range between 0.0 and 20 cm. Therefore, for the

extreme case where the manipulator is advancing toward a target that is 25 cm away, a

change in relative range greater than 5 cm in less than 1.4 seconds could cause damage to

the manipulator or to the target.

65

Figure 13. Zebra-ZERO Manipulator Positioning Time vs Distance.

66

VI. CONCLUSION AND RECOMMENDATIONS

A. THESIS SUMMARY

The capabilities of the Zebra-ZERO Force control robot were successfully expanded

to include a sonar ranging system as an additional external sensor. The added sensor

allowed feasibility tests to be conducted where the manipulator was mounted on a cart that

simulated an autonomous vehicle. The tests showed that the Zebra-ZERO is an adequate

hardware test platform on which to develop algorithms and supporting hardware that

facilitate system employment in an environment where the manipulator is mounted on a

moving platform.

Hardware simulations were conducted where the movements of the cart and the

target object were restricted to the axial direction. The simulations showed that the Zebra-

ZERO mounted on a cart that experienced random movement could operate in an

environment where the target object is either stationary or in motion. The control

algorithms successfully utilized the sonar system to guide the manipulator to the target

utilizing position control mode of operation. After the manipulator contacted the target, the

control algorithm was able to execute a seamless transition to force control mode of

operation in order to manipulate the target object utilizing the force sensor.

B. FUTURE WORK

Initial hardware tests revealed that the sonar transducer may experience noise while

the manipulator is in operation. During early testing some noise was experienced.

However, it was so minute that it did not detrimentally affect the operation of the sonar

67

ranging system. However, after rigorous use, the performance of the power amplifiers

slowly degrades due to heat stress. It is suspected that as the power amplifiers degrade, they

emit components of the PWM control signal in the form of electromagnetic energy (EMI).

These emissions show up as noise imposed on the sonar transducer and its associated

wiring. It is recommended that further studies include developing a solution that would

attenuate not only the noise introduced by the degrading power amplifiers but also noise that

may be introduced in the control environment by external sources.

Testing also revealed that although the manipulator system responded well to slow

perturbations in range to the target, the system could not handle large and frequent changes

in range. The manipulator responded quickly to changes that were less than 3 cm where the

manipulator response time was less that one second. However, as the distance error

increased it took up to 1.5 seconds for the manipulator to respond to a command. It is

recommended that a new set of control commands be developed that will minimize the time

overhead inherent in the commands available in the existing Zebra-ZERO software library.

The most obvious limitation of the simulations was that they only addressed

movement in the axial direction. In a real-world situation movement may occur in three

dimensions. It is recommended that future work include implementing sensors to resolve

errors that occur in three dimensions. Additional sonar sensors may be utilized or other

types of sensors such as lasers and cameras may be introduced.

In conclusion, the Zebra-ZERO proved to be a satisfactory test bed for the concepts

considered in this thesis. Critical developmental issues leading to the employment of an

autonomous vehicle that utilizes a manipulator to execute its mission may clearly be

addressed utilizing the Zebra-ZERO Force Control Robot.

68

APPENDIX A. ZEBRA-ZERO DEMONSTRATION PROGRAMS

/***,
/*************************** A_TEST•C ******************************/
/**
*

* A_TEST.C: a_test.c utilizes common Zebra-ZERO positioning
* commands to demonstrate the capabilities of the manipulator.
*

* R.A. Raphael jan 98
**,

include files ************************/ *******************************

#include <stdio.h>
#include <stdlib.h>
#include <graphics.h>
#include <math.h>
#include <conio.h>
#include <bios.h>
#include "robot.h"

/**

* main program

/

void main(void)
{
int delay = 10000;
vect v3;
vect6 joint_vector;
frame tool_frame, desired_frame;
vect6 ready;
vect6 v;

/* define a joint vector 'ready' corresponding to the ready position */
mkv6(ready, 0, 90*DTOR, -180*DTOR, 180*DTOR, 0, 0);

clrscr();
homerobot() ;

printf ("CLEAR THE AREA 2 FEET AROUND THE MANIPULATOR \n");
printf("Then press any key\n");
getch();
clrscr();
set_seg_time (5) ;
jog(mkv3(v3, 250, 0, -150));
sjmove(0, 170*DTOR)
sjmove(0, -170*DTOR)
sjmove(0, 0*DTOR)
clrscr();
set_seg_time(0) ;

69

/* extract the current joint angles and tool frame and save as variables
*/
where(joint_vector, &tool_frame);
where(joint_vector, &desired_frame) ,-

/* redesignate x, y, z manipulator locations */
desired_frame.p[0] = 260;
desired_frame.p[l] = 380;
desired_frame.p[2] = -125;

printf("Use cmove to position the tool frame at base frame location [26,
38, -12.5]\n\n");
usec_timer_init();
usec_timer(delay);
/* move tool frame */
cmove(&desired_frame);

printf("Use jmove to move the manipulator through its workspace\n\n");
usec_timer_init();
usec_timer(delay);

jmove(ready);
jmove(mkv6(v,0*DTOR, 30*DTOR, -125*DTOR, 178*DTOR, 16*DTOR, 116*DTOR));
jmove(mkv6(v,-65*DTOR, -3*DTOR, -126*DTOR, 200*DTOR, -45*DTOR,
85*DTOR));
jmove(mkv6(v,-115*DTOR, -4*DTOR, -90*DTOR, 230*DTOR, -45*DTOR,
115*DTOR));
jmove(mkv6(v,-153*DTOR, -10*DTOR, -118*DTOR, 184*DTOR, -65*DTOR,
123*DTOR));
jmove(mkv6(v, 0*DTOR, 90*DTOR, -180*DTOR, 180*DTOR, 0*DTOR, 0*DTOR));
jmove(mkv6(v,60*DTOR, 17*DT0R, -170*DTOR, 154*DTOR, -31*DTOR, 95*DTOR));
jmove(mkv6(v,175*DTOR, 5*DTOR, -160*DTOR, 145*DTOR, -60*DTOR,
85*DTOR));
jmove (ready) ;

printf("slightly move the joints of the manipulator using the command
jjog\n\n");
usec_timer_init();
usec_timer(delay);

set_seg_time(5);
jjog(mkv6(v,10*DTOR, 15*DTOR, -15*DTOR, 15*DT0R, 10*DTOR, 10*DTOR));
jmove (ready) ;
set_seg_time (0);

printf("Use hjog to move the manipulator by the displacement vector (5,
5, 10)\n\n ");
usec_timer_init();
usec_timer(delay);
hjog(mkv3(v3, 50.0, 50.0, 100.0));
jmove(ready) ;

printf("Use jog to move the tool frame relative to the base frame \n\n");
usec_timer_init();
usec_timer(delay);
jog(mkv3(v3, 40, 100, 50));

70

printf("reposition the manipulator using sjmove\n\n");
usec_timer_init();
usec_timer(delay);
set_seg_time(4) ;
sjmove(4, 40*DTOR);
sjmove(0, 40*DTOR);
sjmove(l, 100*DTOR);
set_seg_time(0);

gobackhome();
clrscr();
} // end main

/***/
/*************************** CONTOUR.C ******************************/
/**

* CONTOUR.C: The program contour.c utilizes force threshold sensing and
* position control to guide a tool, such as-a pencil , along a
* contoured surface. The program demonstrates the Zebra-ZERO's ability
* to implement the force sensor to detect changes in the environment
* and to adjust the tool frame according to the detected changes
* using position control.
*

*R.A. Raphael Mar 98
******* **/

/************************** inciucie files *****************************/

#include <stdio.h>
#include <stdlib.h>
#include <graphics.h>
#include <math.h>
#include <conio.h>
♦include <bios.h>
#include "robot.h"

void main(void)
{
int i,force_flag;
float surface_detect, force_Z, scale_factor, push_time, tolerance;
vect v3;
vect6 ready, pointl, forces, v;

/* define a joint vector 'ready' corresponding to the ready position */
mkv6(ready, 0, 90*DTOR, -180*DTOR, 180*DTOR, 0, 0);
mkv6(pointl, -87*DTOR, 41.3*DTOR, -192*DTOR, 180.5*DTOR, 30 4*DT0R
12*DTOR);
scale_factor=100 ;

homerobot();
clrscr();
jmove(ready); // move to ready position
gripper(40,10, 500); // open gripper to grasp tool
printf("Place tool in gripper and press any key \n");
getch();
gripper(2,2,500) ; // close gripper on tool

71

printf("Press any key to begin \n");
getch();
jmove(pointl); // move to point directly in front of surface
set_seg_time(5) ; // slow the time required to reach point
jog(mkv3(v3, 0, 0,-50)); // close distance to surface
set_seg_time(0); // restore segment time to max value
zero_force(); // set force sensor offset
read_user_force(forces); // read forces w/ offset
force_Z =abs(scale_factor*forces[2]) ; // extract Z axis value
printvect(forces);

surface_detect = 10;
tolerance = 7;
force_flag=0;
printf("Normal force: %6.4f\n",force_Z);
printf("Surface detct force: %6.4f\n",surface_detect);

for (i = 1; i < 200; i++)
{
read_user_force(forces);
force_Z = scale_factor*forces[2] ;

if (-force_Z < (surface_detect-tolerance))
{
hjog(mkv3(v3, 1, 0, 1)) ;
force_flag = 1;

}
if (-force_Z > (surface_detect + tolerance))

{
hjog(mkv3(v3, 1, 0, -1));
force_flag = 1;

}
if(!force_flag)
{
jog(mkv3(v3, 1, 0, 0));

}
force_flag=0;
printf("exerted force = %6.0f\n",force_Z) ;

}

jog(mkv3(v3, 0, 0, 100)); // open distance to surface
jmove (ready) ;
printf("Press any key when ready to release tool\n");
getch();
gripper(40,10, 500);
printf("Press any key to have the manipulator return to the nest\n");
getch();
gobackhome();
} /* end contour */

72

/*************************** FORCE.C ******************************/

* FORCE.C: The program force.c implements the key force
* control functions and allows the user to experiment with the
* various force
* control parameters. The algorithm first moves the arm to the
* ready position. Next, it sets the initial force threshold,
* stiffness, bias, damping and push time. It then gives the
* user an opportunity to change the stiffness and damping vectors
* as well as the bias force, and the amount of time the force is
* applied. After all parameters have been entered, push_with_bias
* is executed. The interactive portion of the program is
* iterative and allows the user to keep or change parameters each
* time it is run. When the user is finished, the program may be
* exited when prompted.
*

* R.A. Raphael Mar98

/***************************** incxucje files *************************/

#include <stdio.h>
#include <stdlib.h>
#include <graphics.h>
#include <math.h>
#include <conio.h>
♦include <bios.h>
♦include "robot.h"

/******************************* functions *****************************/
int near_pos(vect6 v, vect6 jv)
{
int i ;

for (i=0; i<6; i++) if (fabs(v[i]-jv[i]) > 5.0*DTOR) return(0);
return(1);
}

void printvect_deg(vect6 v)
{
int i ;

for (i=0; i<6; i++) printf("%12.3f",v[i]*RT0D) ;
printf("\n");
}

int read_vect6(char *param, vect6 v, int convert)
{
int i ;

if (sscanf(param,"%f%f%f%f%f%f",&v[0],&v[l],&v[2] ,&v[3],&v[4],&v[5])1=6)

printf("Missing or invalid vect6\n");
return(-1);

73

}
if (convert) /* convert to radians */

for (i=0; i<6; i++) v[i] *= DTOR;
return(0);
}

int read_vect3(char *param, vect6 v)
{
if (sscanf(param,"%f%f%f",&v[0],&v[l],&v[2]) !=3)

{
printf("Missing or invalid vect3\n");
return(-1);
}

return(0);
}

int read_char(char *param, vect6 v)
{
if (sscanf(param,"%f",&v[0]) != 1)

{
printf("Missing or invalid vect3\n");
return(-1);
}

return(0);
}

char cfilename[40] = "";
char hfilename[40] =
FILE *cfile, *hfile;

int teach(char *varname, char mode)
{
vect6 v;
frame f;
static char spaces[] = " ";

if (!stricmp(cfilename,""))
{
printf("File name (w/out extension):");
scanf("%s",cfilename);
printf("\n");
strcpy(hfilename,cfilename);
strcat(cfilename,".c");
strcat(hfilename,".h");
}

if (!(cfile=fopen(cfilename,"at")))
{
printf("Could not open '%s'\n",cfilename);
return(-1);
}

if (!(hfile=fopen(hfilename,"at")))
{
fclose(cfile);
printf("Could not open '%s'\n",hfilename) ,•
return(-1);
}

74

where(v,&f) ;

if (mode == ' j ')
{
fprintf(hfile,"extern vect6 %s;\n",varname);
fclose(hfile);

fprintf(cfile,"vect6 %s = { %8.4f,%8.4f,%8.4f,%8.4f,%8.4f,%8.4f };\n",
varname,v[0],v[l],v[2],v[3],v[4],v[5]);

fclose(cfile);
}

else
{
fprintf(hfile,"extern frame %s;\n",varname);
fclose(hfile);

fprintf(cfile,"frame %s = {
%9.4f,%9.4f,%9.4f,\n",varname,f.r[0][0],f.r[0][l],f.r[0][2]);

spaces[strlen(varname)] = '\0';
fprintf(cfile, "%s

%9.4f,%9.4f,%9.4f,\n",spaces,f.r[l][0],f.r[l][l],f.r[l][2]);
fprintf(cfile, "%s

%9.4f,%9.4f,%9.4f,\n",spaces,f.r[2][0],£.r[2J[l],f.r[2][2]);
fprintf(cfile,"%s %9.2f,%9.2f,%9.2f

};\n",spaces,f.p[0],f.p[l],f.p[2]);
spaces[strlen(varname)] = ' ';

fclose(cfile);
}

while (_bios_keybrd(l)) getch();
return(0);
}

void plot_figl(void)
{

printf("\n\n);
printf(I <-y) \n")
printf(I A. \n")
printf(I \n")
printf(I \n")
printf(

1
(x)<- X— ->(-x)\n")

printf(t \n")
printf(l \n")
printf(I V \n")
printf(' (Y) \n")
printf("\n\n ");

} // end i Dlot_ _figi

/** ***************,

75

/* Function: force_test

Inputs: none

Outputs: none

Return value: none

FORCE_TEST is a tool used to expose the user with the Zebra-zero's
force control mode of operation. The program does the following:

Places arm in the ready position
Rotates gripper 90 degrees
Prompts user for specified force control parameters
exerts specified forces
returns to ready position
Prompts user to run test again

R.A. Raphae1 Jan9 8
 */

void force_test(void)
{
int i, flag;
float surface_detect, force_Z, push_time, damping_value;
vect v3;
vect6 ready, pointl, forces,v, v_stiff, v_bias;
char *param, command[80], inputs[80];
/* define a joint vector 'ready' corresponding to the ready position */
mkv6(ready, 0, 90*DTOR, -180*DTOR, 180*DTOR, 0, 100*DTOR);
mkv6(pointl, -70*DTOR, 20*DTOR, -180*DTOR, 181*DT0R, 21*DT0R, 30*DTOR);

clrscr();
printf("\n\n This program is used to study the functions \n\n");
printf(" set_stiffness, set_bias_force, and push_with_bias.\n");
printf("\n Hit any key to proceed \n") ;
getch();

jmove(ready); // move to ready position

// remove comment to enable the set force call
//set_force_threshold(mkv6(v, .0, .1, .1 , 500, 500, 500));

push_time =15; // designate the number of seconds to apply force

//set default values
mkv6(v_stiff, .15, 0.15, .0, .l,.l, 0.1);
mkv6(v_bias, 0.0, 0.0, 0.2, 0, 0, 0);
damping_value = 0.35;

while (flag != 0) // Start interactive portion of function
{

76

//************** specify stiffness vector ************************

clrscr();
printf("\n\n Enter the 6 element vector that specifies stiffness.

\n\n");
printf(" The maximum value for each element is.\n");
printvect(MAX_STIFF);
printf(" The current stiffness values are:.\n");
printvect(v_stiff);
printf("\n");
plot_figl();

printf ("FORCE CONTROL» ");

gets(inputs);
clrscr();

if (read_vect6(inputs,v,0)== 0)
{
for (i=0; i<6; i++) v_stiff[i] = v[i] ;
}

else
{
clrscr();
printf("\n No modifications received. \n");
printf(" Using previous stiffness values \n");
delay(lOOOO);

}
set_stiffness(v_stiff);

//************** specify bias force vector ************************

clrscr();
printf("\n\n Enter the 6 element vector that specifies bias force.

\n\n");
printf(" The maximum value for each element is \n");
printvect(MAX_BIAS);
printf(" The current stiffness values are: \n");
printvect(v_bias);
printf("\n");
plot_figl();
printf ("FORCE CONTROL» ") ;

gets(inputs);
clrscr();

if (read_vect6(inputs,v,0)== 0)
{
for (i=0; i<6; i++) v_bias[i] = v[i];
}

else
{
clrscr();
printf("\n No modifications received. \n");
printf(" Using previous bias values \n");

77

delay(10000);
}

set_bias_force(v_bias);

//************** specify damping value ************************
clrscr();
printf("\n\n Enter a value between 0.0 and 0.35 to specify damping

constant. \n\n");
printf(" set_damping sets a damping constant for all force controlled

motions \n");
printf(" Lower values correspond to more damping. If motions appear

unstable, \n");
printf(" the damping value should be lowered; if the force response is

too \n");
printf(" sluggish, the damping value should be increased.");
printf(" The current damping value is: %1.2f\n",damping_value);
printf("\n");
printf ("FORCE CONTROL» ");

gets(inputs);
clrscr();

if (read_char(inputs,v)== 0)
{
damping_value = v[0] ;

}
else

{
clrscr();
printf("\n No modification received.\n");
printf(" Using previous damping value\n");
delay(10000);

}

set_damping(damping_value);

/************************ specify Push time ***********************/

clrscr();
printf("\nEnter the duration in seconds the force is to be applied.

\n\n");
printf ("FORCE CONTROL» ") ;
gets(inputs);
clrscr();

if (read_char(inputs,v)== 0)
{
push_time = v[0];

}
else

{
clrscr();
printf("\n No modification received.\n") ;
printf(" Using previous duration value\n");
delay(lOOOO);

78

}

set_damping(damping_value);

// ************** execute PUSH WITH BIAS *******************
clrscr();
printf("\nThe stiffness vector is \n");
printvect(v_stiff);
printf("\nThe bias vector is \n") ;
printvect(v_bias);
printf("\nThe damping constant is: %1.2f\n",damping_value);
printf("\nThe duration that push_with_bias is to be applied is

%2.2f\n",push_time);
plot_figl();
printf("\n Press any key to execute push_with_bias");
gets(inputs);

zero_force();

push_with_bias(push_time);
stiffness_off();

jmove(ready);

printf(" would you like to continue?");

printf(" Press any key if yes, enter n if no \n\n");
printf ("FORCE CONTROL» ") ;
gets(command);
if (!stricmp(command,"n")) flag = 0;
else flag = 1;

}

stiffness_off();

} /* end test_force */

/***AiA + ^^^4^AAAi^iti.:ll.4.^Jt:Ji.vtit^vti^

*/
/* main program
*/
/**i****4 + ^A:Jt:t.i.^^ + i.vtvtVfc:]t4i.Vk.A4.iVtit:4.A
*/

void main(void)
{
clrscr();
homerobot();
f orce_test () ,-
gobackhome();

}

79

/*************************** RANGER.C ******************************/

/*ULDI01.C**

File: RANGER.C

Library Call Demonstrated: ranger()

Purpose: Reads a digital input port.

Demonstration: Configures FIRSTPORTA for input and
reads the value on the port,
then displays the sonar ranging
information in cm.

Other Library Calls: cbDConfigPort()
cbErrHandling()

Special Requirements: Board 0 must have a digital input port.

Moodified 12/2/98 by R.A. Raphael for use with the Polaroid sonar ranger
This program is derived form ULDIOl.C

ULDIOl.C has the following Copyright:
(c) Copyright 1995, ComputerBoards, Inc.
All rights reserved.

modified 12/2/98

*/

/* Include files */
#include <stdio.h>
#include <conio.h>
#include <dos.h>
#include <math.h>
#include "cb.h"

/* Prototypes */
void ClearScreen (void);
void GetCursor (int *x, int *y) ;
void MoveCursor (int x, int y);

void main ()
{
/* Variable Declarations */
int Row, Col, I;
int BoardNum = 0;
int ULStat = 0;
int PortNum, Direction;
int PowerVal, BitValue;
int Zero = 0;
int One = 1;

80

unsigned DataValue;
float range, RevLevel = (float)CURRENTREVNUM,•

/* Declare UL Revision Level */
ULStat = cbDeclareRevision(&RevLevel);

/* Initiate error handling
Parameters:

PRINTALL :all warnings and errors encountered will be printed
STOPALL :if any error is encountered, the program will stop */

ULStat = cbErrHandling (PRINTALL, STOPALL);

/* set up the display screen */
ClearScreen();
printf ("Demonstration of ranger()\n\n");
printf ("Press any key to quit.\n\n");
printf ("The first 7 bits are: ") ,-
printf ("01234567 \n");
GetCursor (&Col, &Row);

/* configure FIRSTPORTA for digital input
Parameters:

BoardNum :the number used by CB.CFG to describe this board.
PortNum :the input port
Direction :sets the port for input or output */

PortNum = FIRSTPORTA;
Direction = DIGITALIN;
ULStat = cbDConfigPort (BoardNum, PortNum, Direction);

while (!kbhit())
{
/* Read the 7 bits digital input and display

Parameters:
BoardNum :the number used by CB.CFG to describe this board
PortNum :the input port
DataValue :the value read from the port */

ULStat = cbDIn(BoardNum, PortNum, &DataValue);
DataValue = -DataValue & 0377;
if (DataValue < 91)
range = 00.0;

else
range = DataValue*0.472;

/* display the value collected from the port */
MoveCursor (Col, Row);
printf ("Range: %2.1f cm ", range);

/* parse DataValue into bit values to indicate on/off status */
MoveCursor (Col + 21, Row);
for (I = 0; I < 8; I++)

{
BitValue = One;
PowerVal = (int)pow(2, I);
if (DataValue & PowerVal)

{
BitValue = Zero;
}

81

printf (" %u ", BitValue) ;
}

}

MoveCursor (1, 20) ;
printf ("\n");

}

/**

*
* Name: ClearScreen
* Arguments:
* Returns:
*
* Clears the screen.
*

** I

#define BIOS_VIDEO 0x10

void
ClearScreen (void)
{

union REGS InRegs,OutRegs;

InRegs.h.ah = 0;
InRegs.h.al = 2;
int86 (BIOS_VTDEO, &InRegs, &OutRegs);
return;

}

/**
*
*
* Name: MoveCursor
* Arguments: x,y - screen coordinates of new cursor position
* Returns:
*
* Positions the cursor on screen.
*

*/

void
MoveCursor (int x, int y)
{

union REGS InRegs,OutRegs;
InRegs.h.ah = 2;
InRegs.h.dl = (char) x;
InRegs.h.dh = (char) y;
InRegs.h.bh = 0;
int86 (BIOS_VIDEO, &InRegs, &OutRegs);
return;

}

82

/**
*
*

* Name: GetCursor
* Arguments: x,y - screen coordinates of new cursor position
* Returns: *x and *y
*

* Returns the current (text) cursor position.
*

** /

void
GetCursor (int *x, int *y)
{

union REGS InRegs,OutRegs;

InRegs.h.ah = 3;
InRegs.h.bh = 0;
int86 (BIOS_VTDEO, &InRegs, &OutRegs);
*x = OutRegs.h.dl;
*y = OutRegs. h. dh ;
return;

}

/*ULDI01.C**

File: RANGER.C

Library Call Demonstrated: ranger()

Purpose: Reads a digital input port.

Demonstration: Configures FIRSTPORTA for input and
reads the value on the port,
then displays the sonar ranging
information in cm.

Other Library Calls: cbDConfigPort()
cbErrHandling()

Special Requirements: Board 0 must have a digital input port.

Moodified 12/2/98 by R.A. Raphael for use with the Polaroid sonar ranger
This program is derived form ULDI01.C

ULDIOl.C has the following Copyright:
(c) Copyright 1995, ComputerBoards, Inc.
All rights reserved.

modified 12/2/98

83

/

/* Include files */
#include <stdio.h>
#include <conio.h>
#include <dos.h>
#include <math.h>
#include "cb.h"

/* Prototypes */
void ClearScreen (void);
void GetCursor (int *x, int *y);
void MoveCursor (int x, int y);

void main ()
{
/* Variable Declarations */
int Row, Col, I;
int BoardNum = 0;
int ULStat = 0;
int PortNum, Direction;
int PowerVal, BitValue;
int Zero = 0;
int One = 1;
unsigned DataValue;
float range, RevLevel = (float)CURRENTREVNUM;

/* Declare UL Revision Level */
ULStat = cbDeclareRevision(&RevLevel);

/* Initiate error handling
Parameters:

PRINTALL :all warnings and errors encountered will be printed
STOPALL :if any error is encountered, the program will stop */

ULStat = cbErrHandling (PRINTALL, STOPALL);

/* set up the display screen */
ClearScreen();
printf ("Demonstration of ranger()\n\n");
printf ("Press any key to quit.\n\n");
printf ("The first 7 bits are: ");
printf ("01234567 \n");
GetCursor (&Col, &Row);

/* configure FIRSTPORTA for digital input
Parameters:

BoardNum :the number used by CB.CFG to describe this board.
PortNum :the input port
Direction :sets the port for input or output */

PortNum = FIRSTPORTA;
Direction = DIGITALIN;
ULStat = cbDConfigPort (BoardNum, PortNum, Direction);

while (!kbhit())
{

84

/* Read the 7 bits digital input and display-
Parameters :

BoardNum .-the number used by CB.CFG to describe this board
PortNum :the input port
DataValue :the value read from the port */

ULStat = cbDIn(BoardNum, PortNum, &DataValue) ;
DataValue = -DataValue & 0377;
if (DataValue < 91)

range = 00.0;
else
range = DataValue*0.472;

/* display the value collected from the port */
MoveCursor (Col, Row);
printf ("Range: %2.1f cm ", range);

/* parse DataValue into bit values to indicate on/off status */
MoveCursor (Col + 21, Row);
for (I = 0; I < 8; I++)

{
BitValue = One;
PowerVal = (int)pow(2,1);
if (DataValue & PowerVal)

{
BitValue = Zero;
}

printf (" %u ", BitValue);
}

}

MoveCursor (1, 20);
printf ("\n");

}

/**
**

* Name: ClearScreen
* Arguments:
* Returns:
*

* Clears the screen.
*

*/

#define BIOS_VIDEO 0x10

void
ClearScreen (void)
{

union REGS InRegs,OutRegs;

InRegs.h.ah = 0;
InRegs.h.al = 2;
int86 (BIOS_VIDEO, &InRegs, &OutRegs);
return;

85

/**
*
* Name: MoveCursor
* Arguments: x,y - screen coordinates of new cursor position
* Returns:
*
* Positions the cursor on screen.
*
**,

void
MoveCursor (int x, int y)
{

union REGS InRegs,OutRegs;

InRegs.h.ah = 2;
InRegs.h.dl = (char) x;
InRegs.h.dh = (char) y;
InRegs.h.bh = 0;
int86 (BIOS_VIDEO, &InRegs, &OutRegs) ;
return;

}

Z**
*
*
* Name: GetCursor
* Arguments: x,y - screen coordinates of new cursor position
* Returns: *x and *y
*
* Returns the current (text) cursor position.
*

*/

void
GetCursor (int *x, int *y)
{

union REGS InRegs,OutRegs;

InRegs.h.ah = 3;
InRegs.h.bh = 0;
int86 (BIOS_VIDEO, &InRegs, &OutRegs) ;
*x = OutRegs.h.dl;
*y = OutRegs.h.dh;;
return;

}

86

/*************************** MV_TIME.C ******************************/

*

* MV_TIME: The program mv_time is used to calculate the
* average amount of time it takes to move the manipulator a
* given distance. The program utilizes the Zebra-ZERO
* movement function hjog. However, the movement function is
* interchangeable. The function moves the tool frame
* back and forth for a designated number of cycles.
* The user is prompted to start the movement cycle.
* at the same time, a stop watch is used to time the events.
* The total time divided over the number of movements is
* the average movement time.
*

* R.A. Raphael Mar 98

/* Include files */
#include <stdio.h>
#include <conio.h>
tinclude <dos.h>
#include <math.h>
#include <stdlib.h>
#include <graphics.h>
tinclude <bios.h>
#include "robot.h"
#include "cb.h"
#include <time.h>

void main(void)
{
int i = 0;
float move_distance=200;
vect v3 ,-
vect6 joint_vector;
frame start_frame;
get_ini t_data("DEFAULT.INI") ;

homerobot();

clrscr();
hjog(mkv3(v3, 0, 0, -200));
where(joint_vector, &start_frame);
printf("Prepare the stopwatch for timing the movements \n");
printf ("Press any key to begin the movements \n");
getch () ,-

while (i++ < 10)
{
hjog(mkv3(v3, 0, 0, move_distance)) ;
hjog(mkv3(v3, 0, 0, -move_distance));
printf(" %d ",i) ;

}
printf("press any key to continue");

87

getch();
gobackhome();
} // end main

88

APPENDIX B. ZEBRA-ZERO HARDWARE TEST PROGRAMS FOR A

STATIONARY TARGET

/*************************** C0NTR0L1.C ******************************/

*
*

* CONTROLl.c tests the ability of the Zebra-ZERO to perform a complex
* pick-and-place task where the manipulator is on a mobile delivery
* platform and the target object is stationary.
*

* R.A. Raphael Mar 98

/* Include files */
#include <stdio.h>
#include <conio.h>
♦include <dos.h>
#include <math.h>
#include <stdlib.h>
#include <graphics.h>
* inelüde <bios.h>
#include "robot.h"
#include "cb.h"

void main(void)
{

vect6 ready,search_config, contact_config;
int bearing=90;
int status;
int grasp_count;
int acquire_obj;
ge t_ini t_data("DEFAULT.INI");

homerobot();

status = 1;
acquire_obj =0; //
while(status != 0)

{
switch(status)

{
case 1: //ensures delivery platform is properly placed

status=acquire_object(bearing) ;
if (status)
status = 2;
else
status = 1;
acquire_obj++;

89

if(acquire_obj > 2)
status = 0;
break;

case 2:
status = grasp_object() ;;
if (status==2)
status = status = 1;
else
status = 0;
printf("peg was not retrieved.");
break;

default:
clrscr();
printf(" An unexpected error has occured. \n");
printf(" Placing manipulator in nest.");
getch();
break;

} // end switch

} // end while

gobackhome();

}

90

/***,
/*************************** pHASEl.C ******************************/

/**
*

* PHASEl.C: Used with controll.c to control the Zebra-ZERO Manipulator
on
* a moving platform
*

* R.A. Raphael
Mar 98

/

/* Include files */
#include <stdio.h>
#include <conio.h>
#include <dos.h>
#include <math.h>
♦include <stdlib.h>
♦include <graphics.h>
♦include <bios.h>
♦include "robot.h"
♦include "cb.h"

// functions for I/O board

/•A**

*
*

* Name: ClearScreen
* Arguments:
* Returns:
*

* Clears the screen.
*
**,

♦define BIOS_VIDEO 0x10

void ClearScreen (void)
{

union REGS InRegs,OutRegs;
InRegs.h.ah = 0;
InRegs.h.al = 2;
int86 (BIOS_VIDEO, fclnRegs, &OutRegs);
return;

}

/A***

*

* Name: MoveCursor
* Arguments: x,y - screen coordinates of new cursor position
* Returns:

91

*

* Positions the cursor on screen.
*
** ********,

void MoveCursor (int x, int y)
{

union REGS InRegs,OutRegs;

InRegs.h.ah = 2 ;
InRegs.h.dl = (char) x;
InRegs.h.dh = (char) y;
InRegs.h.bh = 0;
int86 (BIOS_VIDEO, &InRegs, fcOutRegs);
return;

}

/**
*

* Name: GetCursor
* Arguments: x,y - screen coordinates of new cursor position
* Returns: *x and *y
*

* Returns the current (text) cursor position.
*
**,

void GetCursor (int *x, int *y)
{

union REGS InRegs,OutRegs;
InRegs.h.ah = 3;
InRegs.h.bh = 0 ;
int86 (BIOS_VIDEO, &InRegs, &0utRegs);
*x = OutRegs.h.dl;
*y = OutRegs.h.dh;
return;

}

int near_pos(vect6 v, vect6 jv)
{
int i;

for (i=0; i<6; i++) if (fabs(v[i]-jv[i]) > 5.0*DTOR) return(O);
return(1);
}

void printvect_deg(vect6 v)
{
int i;

for (i=0; i<6; i++) printf("%12.3f",v[i]*RTOD);
printf("Nn");
}

92

*

* Name: acquire_object
* Arguments: bearing - bearing of closest object to manipulator
* Returns: 1 if object is found
* 0 if no objcect is found
*
*

int acquire_object(int bearing)
{
vect f_new, v3;
vect6 home_jv;
vect6 ready,search_config, contact_config;
vect6 v;
frame f;
char c;
int Row, Col, I, i, n;
int BoardNum = 0;
int ULStat = 0;
int PortNum, Direction;
int PowerVal, BitValue;
int False = 0;
int True = 1;
int aquire_peg, accuracy_count = 0;
int error_int;
vect6 joint_vector, grasp_config;
frame tool_frame;
frame desired_frame;
frame grasp_frame ;
unsigned DataValue, DataValue_temp;
float range,range_in, error, RevLevel = {float)CURRENTREVNUM;
float sum_value, last_sum_value=42;
float x_posit, y_posit,z_posit; //location of tool frame
float Tool_Location, Tool_Location_x, Tool_Location_y; // range of tool
from base frame origion
float desired_frame_vector;

/* Declare UL Revision Level. This is required for CYDIO I/O board. */
ULStat = cbDeclareRevision(&RevLevel) ;

mkv6(ready, 0.0, 90.0*DTOR, -180.0*DTOR, 180.0*DTOR, 0.0, 0.0);
aguire_peg = False;

printf ("In LOOP bearing is %d \n ".bearing);
mkv6(search_config, bearing*DTOR, 90.0*DTOR, -132.0*DTOR, 183.0*DTOR,
48.0*DTOR, 100.0*DTOR);
mkv6(contact_config, bearing*DTOR, 50.0*DTOR, -160.0*DTOR, 175.0*DTOR, -
17.3*DTOR, 10.2*DTOR);
jmove(search_config);
where (j oint_vector, &tool_frame) ;

/* Initiate error handling
Parameters:

93

PRINTALL :all warnings and errors encountered will be printed
STOPALL :if any error is encountered, the program will stop */

ULStat = cbErrHandling (PRINTALL, STOPALL);

GetCursor (&Col, &Row);

/* configure FIRSTPORTA for digital input
Parameters:

BoardNum :the number used by CB.CFG to describe this board.
PortNum :the input port
Direction :sets the port for input or output */

PortNum = FIRSTPORTA;
Direction = DIGITALIN;
ULStat = cbDConfigPort (BoardNum, PortNum, Direction) ;
ULStat = cbDIn(BoardNum, PortNum, &DataValue);
DataValue = -DataValue & 0377;
DataValue_temp = DataValue * 0.5;
z_posit = 300;
where(joint_vector, &desired_frame) ;
last_sum_value=40;
where(joint_vector, &desired_frame);
accuracy_count = 0;
aquire_peg = False;
n = 120;
while (—n > 1)

{
/* Read the 7 bits digital input and display

Parameters:
BoardNum
PortNum
DataValue

the number used by CB.CFG to describe this board
the input port
the value read from the port */

ULStat = cbDIn(BoardNum, PortNum, &DataValue);
DataValue = -DataValue & 0377;
if(DataValue < 91)

{
usec_timer_init () ;
usec_timer(1000);
ULStat = cbDIn(BoardNum, PortNum, &DataValue);
DataValue = -DataValue & 0377;
if (DataValue< 91)

{
range_in = 91* 0.472;
}

else
{
range_in = DataValue*0.472 ;
}

}

else
{
range_in = DataValue*0.472;

}

// Impliment filter

94

sum_value = range_in + 0.8 * last_sum_value;
range =0.2 * sum_value;
last_sum_value = sum_value;
where(j oint_vector, &tool_frame);
Tool_Location_x = tool_frame.p[0];
Tool_Location_y = tool_frame.p[l];
Tool_Location =0.1* sqrt(Tool_Location_x *Tool_Location_x +

Tool_Location_y * Tool_Location_y)-6;

error = range - Tool_Location;
desired_frame_vector = 10.0 * (error + Tool_Location + 6.0);
desired_frame.p[0] = desired_frame_vector * cos(bearing*DTOR);
desired_frame.p[l] = desired_frame_vector * sin(bearing*DTOR) ;
desired_frame.p[2] = z_posit;

/* display the value collected from the port */
MoveCursor (Col, Row);

printf ("range %2.1f \n tool location %4.1f \n error %4.1f ",
range, Tool_Location, error);

cmove(&desired_frame);
if (aquire_peg == False)

{
if (abs((int)error) < 4)

{
z_posit = 150;
}

}
error_int = 10 * error;

if (abs(error_int) < 3)
{
accuracy_count = accuracy_count + 1;
printf("a count %d",accuracy_count);

}
else

{
accuracy_count = 0;

}

if (accuracy_count > 40)
{

mkv6(grasp_config, bearing*DTOR, 50.0*DTOR, -160.0*DTOR,
175.0*DTOR, -20.0*DTOR, 10.0*DTOR);

jmove(grasp_config) ;
where(joint_vector, &grasp_frame);

grasp_frame.p[0] = desired_frame.p[0];
grasp_frame.p[l] = desired_frame.p[l];
grasp_frame.p[2] = 0.0;
cmove(&grasp_frame) ;
return(1);

}
}

return(0);

95

*
* Name: contact_object
* Arguments: None
* Returns: 1 if surface is contacted
* 0 if the surface is not detected
*
* Places the gripper so that it is contacting the peg.
*
* R.A. Raphael Mar 98
**/

int contact_object()
{
int n;
vect6 force_vector;
vect v3;
float force_z, displacement;

zero_force();
n = 40;
while (—n > 0)

{
read_user_force(force_vector) ;
force_z = abs(100*force_vector[2]);// extract z force
if (force_z > 10)

{
printf("\n surface detected\n \n");
return(1);

}
hjog(mkv3(v3, 0, 0, 1));

} // end while
hjog(mkv3(v3,0,0,-20));
return(0);
} // end function

*
*
* Name: extract_peg
* Arguments: None
* Returns: None
*
* extracts peg.
*

I

int extract_peg(void)
{
vect v3;
vect6 force_vector;
float force_x;

96

set_seg_time(5);
hjog(mkv3(v3, 0, 0,-5));
gripper(80, 5, 0);
hjog(mkv3(v3, 0, 0, 25));
//getch();
zero_force() ;
gripper(0, 10, 1000);
jog(mkv3(v3, 0, 0, 30));
jog(mkv3(v3, 0, 0, 30));

read_user_force(force_vector) ;
force_x = abs(100*force_vector[0]);// extract z force
if (force_x > 5)

{
printf("\n peg retreaved detected\n \n");
return(1);

}
return(0);
} // end function

*
*

* Name: place_peg
* Arguments: None
* Returns: None
*

* places peg in front of hole.
*

/

int place_peg(void)
{
vect v3;
vect6 force_vector;
int n;
float force_x;
set_seg_time(5);
hjog(mkv3(v3, 0, 0, -80));
jog(mkv3(v3, 0, 0, -100));
zero_force() ;
set_seg_time(1);
n = 100;
while(—n > 0)

{
read_user_force(force_vector) ;
force_x = abs(100*force_vector[0]) ;// extract y force
if (force_x > 10)

{
printf("\n peg placed\n \n");
gripper(80, 5, 0);
set_seg_time(0);
return(1);

}
jog(mkv3(v3, 0, 0, -1));

}

97

printf(" peg not placed");
set_seg_time(0) ;
return(0);
} // end function

*

* Name: grasp_object
* Arguments: bearing - bearing of closest object to manipulator
* Returns: 1 if object is found
* 0 if no objcect is found

±*i!*it**ili,*i,iri!i.i,i,i,i.ici,i,icir:k.

int grasp_object(int bearing)
{
vect f_new, v3;
vect6 home_jv;
vect6 ready,search_config, contact_config;
vect6 v;
frame f;
char c;
int status;
vect6 joint_vector, grasp_config;
frame tool_frame;
frame desired_frame;
frame grasp_frame;

set_seg_time(5); // slow manipulator response
hjog(mkv3(v3,-119, 0, 0)); // postion gripper infront of peg
printf("\n grasp object");
set_seg_time(0);
status = contact_object();
if (status < 1)

return(2);

extract_peg();
if (status < 1)
return(0)

place__peg ()
if (status < 1)

return(0)

jog(mkv3(v3, 0, 0, 200));
set_seg_time(0);
return(1);
}

98

APPENDIX C. ZEBRA-ZERO HARDWARE TEST PROGRAMS FOR A MOVING

TARGET

/*************************** CONTROL2.C ******************************/

*

* CONTROL2.C: executes a control algorithm that grasps a
* device whose location and configuration is *known by the control
* algorithm, and places it on a vertical surface where the *distance
* between the Manipulator and the surface may be constantly varying.
* Must be compiled with force.c, robot.lib and cbcl.lib.
*

* R.A. Raphael Mar 98

/* Include files */
#include <stdio.h>
#include <conio.h>
♦include <dos.h>
#include <math.h>
♦include <stdlib.h>
♦include <graphics.h>
♦include <bios.h>
♦include "robot.h"
♦include "cb.h"
♦include <time.h>

void main(void)
{

vect6 ready,search_config, contact_config;
int bearing=90;
int status;
int grasp_count;

get_init_data("DEFAULT. INI") ;

homerobot () ;

status = 1;
grasp_count =0; //
while(status != 0)

{
switch(status)

{
case 1: //ensures delivery platform is properly placed

status=detect_object(bearing);
if (status)
status = 2;

99

break;
case 2:

status = grasp_device();
if (status)
status = 3;
else
status = 2;
grasp_count++;

if(grasp_count>2)
status = 0;
break;

case 3:
status = acquire_target(bearing);
if(status)
status = 4;
else
status = 6;
break;

case 4:
status = make_contact(bearing);
if (status)

status = 5;
else

status = 6;
break;

case 5:
apply_device();
status = 0;
break;

case 6:
return_device();
status = 0;
break;

default:
clrscr();
printf(" An unexpected error has occured. \n");
printf(" Placing manipulator in nest.");
getch();
break;

} // end switch

} // end while

gobackhome();

clrscr();

} // end main

100

/A**/

/*************************** PHASE2.C ******************************/
/**

/A**

* PHASE2.C: Used with control2.c to control the Zebra-ZERO
* Manipulator on a moving platform.
*

* R.A. Raphael Mar 98
it***/

/* Include files */
#include <stdio.h>
#include <conio.h>
#include <dos.h>
#include <math.h>
♦include <stdlib.h>
♦include <graphics.h>
♦include <bios.h>
♦include "robot.h"
♦include "cb.h"
♦define number_of_scans 60
♦include <time.h>

// functions for I/O board

*
*
* Name: ClearScreen
* Arguments:
* Returns:
*
* Clears the screen.

♦define BIOS_VIDEO 0x10

void ClearScreen (void)
{

union REGS InRegs,OutRegs;
InRegs.h.ah = 0;
InRegs.h.al = 2;
int86 (BIOS_VIDEO, &InRegs, &OutRegs) ;
return;

}

* Name: MoveCursor
* Arguments: x,y - screen coordinates of new cursor position
* Returns:
*

* Positions the cursor on screen.

101

/

void MoveCursor (int x, int y)
{

union REGS InRegs,OutRegs;

InRegs . h. ah = 2 ;
InRegs.h.dl = (char) x;
InRegs.h.dh = (char) y;
InRegs.h.bh = 0;
int86 (BIOS_VIDEO, fclnRegs, &OutRegs);
return;

/**

*

* Name: GetCursor
* Arguments: x,y - screen coordinates of new cursor position
* Returns: *x and *y
*

* Returns the current (text) cursor position.
*

** /

void GetCursor (int *x, int *y)
{

union REGS InRegs,OutRegs;

InRegs.h.ah = 3;
InRegs.h.bh = 0;
int86 (BIOS_VIDEO, fclnRegs, &OutRegs);
*x = OutRegs.h.dl;
*y = OutRegs.h.dh;
return;

}

int near_pos(vect6 v, vect6 jv)
{
int i;

for (i=0; i<6; i++) if (fabs(v[i]-jv[i]) > 5.0*DTOR) return(0);
return(1);
}

void printvect_deg(vect6 v)
{
int i ;

for (i=0; i<6; i++) printf("%12.3f",v[i]*RTOD);
printf("\n");
}

102

/**ir* + iritirit**
*
* Name: get_range
* Arguments: None
* Returns: Range in cm
*

* get_range polls the I/O board input port to acquire the average sonar
* ranging data over 5 readings taken over a time designated as "delay."
* It then determines if the reading is within range. Max range reading
* is 123, min range reading is 42 cm. The highest value this function
* will return is 123 and the lowest is 41. Numbers that are detected as

.* being less than 41 are returned as 200.

* R.A. Raphael Mar 1998
it***,

int get_range(void)
{

/* Variable Declarations */
int Row, Col, I, i;
int BoardNum = 0;
int ULStat = 0;
int PortNum, Direction;
int PowerVal, BitValue;
int acquire, contact;
int delay = 1500;

unsigned DataValue; // DataValue_temp;
float range;
float range_in, error, RevLevel = (float)CURRENTREVNUM;
float sum_value, last_sum_value=42;
float bearing; // bearing to object
float x_posit, y_posit; //location of tool frame
float Tool_Location; // range of tool from base frame origin

/* Declare UL Revision Level. This is required for CYDIO I/O board. */
ULStat = cbDeclareRevision(&RevLevel);

/* Initiate error handling
Parameters:

PRINTALL :all warnings and errors encountered will be printed
STOPALL :if any error is encountered, the program will stop */

ULStat = cbErrHandling (PRINTALL, STOPALL);

/* configure FIRSTPORTA for digital input
Parameters:

BoardNum :the number used by CB.CFG to describe this board,
the input port
sets the port for input or output */

PortNum
Direction

PortNum = FIRSTPORTA;
Direction = DIGITALIN;
ULStat = cbDConfigPort (BoardNum, PortNum, Direction);

103

ULStat = cbDIn(BoardNum, PortNum, &DataValue);
DataValue = -DataValue & 0377;

// obtain the average value of 5 consecutive sonar readings
for (i = 0; i < 5; ++i)
{
/* Read the 7 bits digital input and display

Parameters:
BoardNum
PortNum
DataValue

the number used by CB.CFG to describe this board
the input port
the value read from the port */

ULStat = cbDIn(BoardNum, PortNum, &DataValue);
DataValue = -DataValue & 0377;

if (DataValue < 91) // screen for minimum reading
range_in = 90*0.472;// scale sonar reading to cm

else
range_in = DataValue*0.472;// scale sonar reading to cm

// execute averaging over 5 samples
sum_value = range_in + last_sum_value;
range =0.2 * sum_value;
last_sum_value = sum_value;

usec_timer_init(); // initialize timer
usec_timer(delay); // start timer
}

if (range < 40) // set min range flag of 200
range = 200;

return(range);
}

/**
*
* Name: detect_objec
* Arguments: bearing
* Returns: 1 if object is found
* 0 if no object is found
*

* detect_object places the manipulator in "detect configuration." This
* configuration moves the manipulator limbs out of the way of the
* transducer. The function "get_range" is called to obtain the range to
* the target. Target must be between min_range and max_range for a min of
* n_scans calls to "get_range" for a 1 to be returned, n scans are
* designated to get 8 consecutive valid ranges. After which, a 0 is
* returned.
*

* R.A. Raphael Mar 1998

int detect_object(int bearing)
{

104

int range;
int n = 100;
int detect_valid = 0;
int min_range = 65;
int max_range = 75;
int n_scans=8;
int Col, Row;
vect6 detect_config;

// place manipulator sonar sensor at bearing to detect object
mkv6(detect_config, bearing*DTOR, 100.0*DTOR, -175.0*DTOR, 185.0*DTOR,
18.0*DTOR, 0.0*DTOR);
jmove(detect_config);

// track approach to object of interest

clrscr();
MoveCursor (1, 10);
GetCursor (&Col, &Row); // memorize cursor location

while (--n > 0)
{
range=get_range(); // fetch range
MoveCursor (Col, Row);// place cursor

/*********** prompt user to position manipulator *****.************/

if (range > 150 || range < 60)
{
printf("Target is too close. Move manipulator away form target \n");
printf(" \n");
printf(" \n");

}

else if (range < 100)
{
printf("Target is in range and must remain between 65 & 75cm \n");
printf("away form manipulator for 8 seconds. \n");
printf("Range to detected object is %d \n",

range);
}

else
{
printf("Target out of range approach Target. \n")
printf(" \n")
printf(" \n«)

}

// if range is within min and max range for n_scans return 1
if(range < max_range && range > min_range)
detect_valid = detect_valid + 1;

else
detect_valid = 0;

if(detect_valid > n_scans)
return(1);

105

} // end while in_range loop

return(O); // return 0 if could not detect object

} // end function detect_objec

*
* Name: grasp_device
* Arguments: none
* Returns: 1 if device is retrieved
* 0 if object is not retrieved
*

* grasp_device retrieves a known device from a known locaion a
positions
* the manipulator with device in hand for the next task.
*

* R.A. Raphael Mar 1998
**/

int grasp_device(void)
{
vect v3;
vect6 force_vector;
float force_z;
vect6 grasp_vector, contact_config;

clrscr();
MoveCursor (1, 10);
mkv6(grasp_vector, 15.0*DTOR, 48.6*DTOR, -174.3*DTOR, 182.2*DTOR,
59.0*DTOR, 20.0*DTOR);
mkv6(contact_config, 0.0*DTOR, 90.0*DTOR, -132.0*DTOR, 183.0*DTOR,
48.0*DTOR, 100.0*DTOR);

jmove(grasp_vector); // Maneuver manipulator over device to be
placed
gripper(80.0, 10, 0); // open gripper
set_seg_time(4); // slow manipulator movements
jog(mkv3(v3, 0, 0, -106)); // position gripper to grasp device
zero_force(); // init force sensor
gripper(0.0, 10, 1000); // close gripper
jog(mkv3(v3, 0, 0, 127)),- // move device clear of nest

/**************** check if object was retrieved ***********/
read_user_force(force_vector);
force_z = abs(100*force_vector[2]);// extract z force and scale results

if (force_z < 5)
{
printf("\n Device was not retrieved. Press any key \n \n");
getch();
return(0);

}
printf("\n Device was retrieved \n \n");

jmove(contact_config); // position manipulator for next task
set_seg_time(0); // restore default movement speed

106

return(1);

} // end function grasp_device

*
*

* Name: acquire_target
* Arguments: bearing - bearing of closest object to manipulator
* Returns: 1 if object is found
* 0 if no object is found
*

* acguire_target checks if the environment is stable enough to attempt
* to place the device. At the same time the check is being made, the
device
* is held at a safe distance from the target. If the environment is
* stable(20 reading w/ +/- 1 cm readings)for n sonar readings the
* function returns a 1. If after n readings the environment is not
* stable it returns a 0.
*

* R.A. Raphael Mar 1998
**/

int acquire_target(int bearing)
{
vect f_new, v3;
vect6 home_jv;
vect6 search_config;
vect6 v;
frame f;
char c;
int Row, Col, I, i, n;
int BoardNum = 0;
int ULStat = 0;
int PortNum, Direction;
int PowerVal, BitValue;
int accuracy_count = 0;
int delay=100;
int tool_offset = 20; // allows for stand-off distance to object(20 cm)
vect6 joint_vector, grasp_config;
frame tool_frame;
frame desired_frame;
frame grasp_frame;
unsigned DataValue, DataValue_temp;
float range,range_in, error, RevLevel = (float)CURRENTREVNUM;
float sum_value;
float x_posit, y_posit,z_posit; //location of tool frame
float Tool_Location, Tool_Location_x, Tool_Location_y; // range of tool
from base frame origin
float desired_frame_vector;

/* Declare UL Revision Level. This is required for CYDIO I/O board. */
ULStat = cbDeclareRevision(&RevLevel);

107

// set flags
//acquire_target = False;

clrscr();
MoveCursor (1, 10);

printf ("The bearing to target is %d \n \n"»bearing);
GetCursor (&Col, &Row); // memorize cursor locaion //38
mkv6(search_config, bearing*DTOR, 90.0*DTOR, -132.0*DTOR, 183.0*DTOR,
45.0*DTOR, 100.0*DTOR);

set_seg_time(4); // slow manipulator
jmove(search_config) ; // move manipulator limbs out of the way
set_seg_time(0); // restore fastest segment time
where(joint_vector, &tool_frame) ; // remember current tool frame matrix

/* Initiate error handling
Parameters:
PRINTALL .-all warnings and errors encountered will be printed
STOPALL :if any error is encountered, the program will stop */

ULStat = cbErrHandling (PRINTALL, STOPALL);

/* configure FIRSTPORTA for digital input
Parameters:
BoardNum :the number used by CB.CFG to describe this board.
PortNum :the input port
Direction :sets the port for input or output */

PortNum = FIRSTPORTA;
Direction = DIGITALIN;
ULStat = cbDConfigPort (BoardNum, PortNum, Direction);
ULStat = cbDIn(BoardNum, PortNum, &DataValue);
DataValue = -DataValue & 0377;

z_posit = 300; // z location of the manipulator after error is reduced
where(joint_vector, &desired_frame); // memorize current frame for
rotation matrix
accuracy_count = 0;

n = 50;
while (—n > 1) // n attempts will be made to stabilize platform to +/-
2 cm

{
/* Read the 7 bits digital input and display
Parameters:
BoardNum :the number used by CB.CFG to describe this board
PortNum :the input port
DataValue .-the value read from the port */

ULStat = cbDIn(BoardNum, PortNum, &DataValue) ;
DataValue = -DataValue & 0377;

if(DataValue < 91) // if reading is too low read again

usec_timer_init(); // init timer
usec_timer(delay); // invoke timer

108

ULStat = cbDIn(BoardNum, PortNum, &DataValue); // call range
information

DataValue = -DataValue & 0377;
if (DataValue< 91) // if still low set lowest value

range_in = 91* 0.472; // convert ranging information
else // if not low convert read value

range_in = DataValue*0.472; // convert ranging information cm
}

else //if not low set convert read value
range_in = DataValue*0.472; //convert ranging information to cm

/******************** compute range to target ***********************/
range = range_in;
where(joint_vector, &tool_frame);
Tool_Location_x = tool_frame.p[0];
Tool_Location_y = tool_frame.p[1];
Tool_Location = 0.1 * sqrt(Tool_Location_x *Tool_Location_x +

Tool_Location_y * Tool_Location_y);

/******************** create desired position vector *****************/
error = range - Tool_Location;
desired_frame_vector = 10.0 * (error + Tool_Location - tool_offset);
desired_frame.p[0] = desired_frame_vector'* cos(bearing*DTOR);
desired_frame.p[l] = desired_frame_vector * sin(bearing*DTOR);
desired_frame.p[2] = z_posit;

/* display the value collected from the port */
MoveCursor (Col, Row);
printf ("range to target: %2.1f cm\n", range);
printf ("Tool frame location: %4.1f cm\n", Tool_Location);
printf ("Error: %4.1f cm\n\n",(error -

tool_offset)) ;
printf ("Range measurements to termination: %d\n",n);

cmove(&desired_frame);

if ((int)Tool_Location > 20) // lower tool frame after tool frame is
at safe dist

z_posit = 0.0;

/**************** determine if environment is stable

if ((abs((int)error)-20) < 2)
{
accuracy_count = accuracy_count + 1;
printf("a count %d",accuracy_count);

}
else

{
accuracy_count = 0;

}
if (accuracy_count > 20)

{
printf("environment is stable \n \n");
return(1);

}

109

} // end while
return(0);

} // end function acquire_target

*
*
* Name: make_contact
* Arguments: bearing - bearing of closest object to manipulator
* Returns: 1 if device contacts target
* 0 if device does not make contact-
*

* make_contact assumes the manipulator has been placed in a
* configuration for approaching the target. The tool frame is advanced
* toward the target until contact is made.
*
* R.A. Raphael Mar 1998

/

int make_contact(int bearing)
{
vect f_new, v3;
vect6 home_jv;
vect6 v;
frame f;
char c;
float get_data[3];
int Row, Col, I, i;
int BoardNum = 0;
int ULStat = 0;
int PortNum, Direction;
int PowerVal, BitValue;
int n, accuracy_count = 0;
int delay=100;
int tool_offset =20; // allows for object being placed
vect6 joint_vector, grasp_config;
vect6 force_vector;
frame tool_frame;
frame desired_frame;
frame grasp_frame;
unsigned DataValue, DataValue_temp;
float range,range_in, error, RevLevel = (float)CURRENTREVNUM;
float sum_value;
float x_posit, y_posit,z_posit; //location of tool frame
float Tool_Location, Tool_Location_x, Tool_Location_y; // range of tool
from base frame origin
float desired_frame_vector;
float force_z;

/* Declare UL Revision Level. This is required for CYDIO I/O board. */
ULStat = cbDeclareRevision(&RevLevel);

/* Initiate error handling
ULStat = cbErrHandling (PRINTALL, STOPALL);

110

/* set up the display screen */
ClearScreen();
MoveCursor (1, 10);
printf("The device is being deployed \n\n");
GetCursor (&Col, &Row);

/* configure FIRSTPORTA for digital input
Parameters:
BoardNum :the number used by CB.CFG to describe this board.
PortNum :the input port
Direction :sets the port for input or output */

PortNum = FIRSTPORTA;
Direction = DIGITALIN;
ULStat = cbDConfigPort (BoardNum, PortNum, Direction);
ULStat = cbDIn(BoardNum, PortNum, &DataValue) ;
DataValue = -DataValue & 0377;

where(joint_vector, &desired_frame) ;
accuracy_count = 0;
zero_force{);
n = 60;
while (n-- > 1)

{
ULStat = cbDIn(BoardNum, PortNum, &DataValue);
DataValue = -DataValue & 0377;

if(DataValue < 91)
{
usec_timer_init();
usec_timer(delay);
ULStat = cbDIn(BoardNum, PortNum, &DataValue);
DataValue = -DataValue & 0377;
if (DataValue< 91)
range_in = 91* 0.472;

else
range_in = DataValue*0.472;

}
else
range_in = DataValue*0.472;

/****************** compute range to target ********************/
range = range_in;
where(joint_vector, &tool_frame);
Tool_Location_x = tool_frame. p [0] ;
Tool_Location_y = tool_frame.p[l];
Tool_Location = 0.1 * sqrt(Tool_Location_x *Tool_Location_x +

Tool_Location_y * Tool_Location_y);

/****************** compute new position vector *****************/
error = range - Tool_Location;
desired_frame_vector = 10.0 * (error + Tool_Location - tool_offset) ;
desired_frame.p[0] = desired_frame_vector'* cos(bearing*DTOR);
desired_frame.p[l] = desired_frame_vector * sin(bearing*DTOR);
desired_frame.p[2] = z_posit;

111

/* display the value collected from the port */
MoveCursor (Col, Row);
printf ("range to target: %2.1f cm\n", range);
printf ("Tool frame location: %4.1f cm\n", Tool_Location) ;
printf ("Error: %4.1f cm\n",(error -

tool_offset));
printf ("Tool offset: %2d\n\n", tool_offset);
printf ("Range measurements to termination: %2d\n",n);

cmove(&desired_frame); // move manipulator to desired position

if ((abs((int)error)-tool_offset) < 1)
accuracy_count = accuracy_count + 1;

else
accuracy_count = 0;

if (accuracy_count > 3)
tool_offset = (tool_offset-2);

read_user_force(force_vector) ;
force_z = abs(100*force_vector[2]);// extract z force

if (force_z > 20)
{
printf("surface detected \n \n");
return(1);

}

} // end while

return(0); // device was not placed

} // end function make_contact

*
*

* Name: apply_device
* Arguments: None
* Returns: None
*

* apply_device applies a force to the tool frame in the z direction
* for the period of time specified by the variable push_time and then,
* moves the tool frame away from the surface to which the force was
* applied.
*

* R.A. Raphael Mar 1998

/

void apply_device(void)
{
vect v3;
vect6 v6;
float push_time = 2.5;

112

set_stiffness(nikv6(v6/ 0.1, 0.1, 0.0, 0.1, 0.1, 0.1));
set_bias_force(mkv6(v6, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0));
push_with_bias(push_time);
gripper(80.0, 10, 0);
hjog(mkv3(v3, 0, 0, -125));

}

*
*
* Name: return_device
* Arguments: none
* Returns: 1 if device is retrieved
* 0 if object is not retrieved
*

* return_device returns a known device to a known locaion and positions
* the manipulator for the next task.
*

* R.A. Raphael Mar 1998

/

int retum_device (void)
{
vect v3;
vect6 force_vector;
float force_z;
vect6 grasp_vector, contact_config;

clrscr();
MoveCursor (1, 10) ;
mkv6(grasp_vector, 15.0*DTOR, 48.6*DTOR, -174.3*DTOR, 182.2*DTOR,
59.0*DTOR, 20.0*DTOR);
mkv6(contact_config, 0.0*DTOR, 90.0*DTOR, -132.0*DTOR, 183.0*DTOR,
48.0*DTOR, 100.0*DTOR);

jmove(grasp_vector); // Maneuver manipulator over device to be
placed
set_seg_time(4) ; // slow manipulator movements
jog(mkv3(v3, 0, 0, -80)); // position gripper to grasp device
zero_force(); // init force sensor
set_seg_time(l);

force_z = 0;
/******************* place device ***********************/
while (force_z < 10)

{
jog(mkv3(v3, 0, 0, -3)); // move device clear of nest

/**************** check -[f object is placed ***********/
read_user_force(force_vector);
force_z = abs(100*force_vector[2]) ,-// extract z force

}
gripper(80.0, 10, 1000); // open gripper
printf("\n Device is replaced \n \n");
jog(mkv3(v3, 0, 0, 100));

113

jmove(contact_config); // position manipulator for next task
set_seg_time(0); // restore default movement speed

return(1);

} // end function return_device

114

LIST OF REFERENCES

1. Integrated Motions, Inc., Zebra-ZERO User's Manual, Version 3.0, Integrated
Motions, Inc., Berkeley, CA, 1994.

2. Hewlett Packard, General Purpose Motion Control ICs Technical Data Sheet,
HCTL-1100 Series, Hewlett Packard.

3. John J. Craig, Introduction to Robotics Mechanics and Control, Second Edition,
Addison-Wesley, Reading, MA., 1989.

4 . Polaroid Corporation, Ultrasonic Ranging System, Polaroid and Polapulse®,
Cambridge, MA, 1992.

5. CyberResearch, Inc., Digital I/O Boards CYDIO 24, CYDIO 24H, CYDIO 24C
User's Manual, Revision 5.0, CyberResearch, Branford, CT, 1997.

6. CyberResearch, Inc., CyDAS Universal Driver Library User's Manual, Revision
3.3, CyberResearch, Branford, CT, 1997.

7. Li, Yangmin, "Hybrid Control Approach to the Peg-in-Hole Problem," IEEE
Robotics and Automation Magazine, pp. 52-60, June 1997.

8. Fu, K.S., Gonzalez, R.C., and Lee C.S.G, Robotics: Control, Sensing, Vision, and
Intelligence, McGraw-Hill Book Company, New York, NY, 1987.

9. McCarragher, J., Hovland, G.,Sikka, P, Aigner, P. Austin, D., "Hybrid Dynamic
Modeling and Control of Constrained Manipulation Systems," IEEE Robotics &
Automation Magazine, pp. 27-44, June 1997.

10. L. Tsai and A. Morgan, "Solving the Kinematics of the Most General Six- and Five-
degree-of-freedom Manipulators by Continuation Methods," Paper 84-DET-20,
ASME Mechanisms Conference, Boston, MA, October, 1984.

11. D. Pieper and B. Roth, "The Kinematics of Manipulators Under Computer Control,"
Proceedings of the Second International Congress on Theory of Machines and
Mechanisms, Vol. 2 Zakopane, Poland, 1969, pp. 159-169.

12. B .W. Kernighan, D.M. Ritchie, The C Programming Language, Bell Telephone
Laboratories, Incorporated, Englewood Cliffs, NJ, 1978.

13. Borland, Turbo C++ User's Guide, Borland International, Scotts Valley, CA, 1992.

115

14. Nomadic Technologies, The Sensus 500 User's Manual, Nomadic Technologies,
Mountain View, CA, 1997.

15. D. G., "Fine-Motion Planning for Robotic Assembly in Local Contact Spaced," PhD
Dissertation, Computer Science Department, U.Mass., Amherst, MA 01003.

16. Dankin, G., Liu, Y., Popplestone, R.J. (1994),A "Multilevel Assembly Planning
System," Proceedings of the 1994 ASME Winter Annual Meeting in Chicago.

17. T.M. Sobh, B. Benhabib, "Discrete Event and Hybrid Systems in Robotics and
Automation: An Overview," IEEE Robotics and Automation Magazine, pp. 16-18,
June 1997.

18. Pepyne, D.L. and Cassandras, C, "Optimal Dispatching Control for Elevator
Systems During Peak Traffic," 35th IEEE Conference on Decision and Control,
Kobe, Japan, December 1996.

19. Back, A., Guckenheimer, J., and Myers, M., A Dynamical Simulation Facility for
Hybrid Systems, Hybrid Systems, LNCS 736, R. Grossman, A. Nerode, A.P. Ravn,
And H. Rischel eds., pp. 255-267, Springer Verlag, 1993.

20. Brockett, R., Hybrid Models for Motion Control Systems, Essays on Control-
perspectives in the Theory and its Applications, H.L. Trentelman and J.C. Willems,
eds., Birkhauser Publishers, Boston, MA, 1993.

21. C.S. Bonaventura, and K.W. Lilly, "A Constrained Motion Algorithm for the
Shuttle Remote Manipulator System," IEEE Control Systems, pp. 6, October 1995.

116

INITIAL DISTRIBUTION LIST

No. Copies

Defense Technical Information Center 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

Dudley Knox Library
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

Chairman, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

Professor Xiaoping Yun, Code EC/YX
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

Professor John Ciezki, Code EC/CY
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

LT Roy A. Raphael...
453 N. Hale Street
Pottstown, PA 19464

117

